PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o564.
Published online 2010 February 10. doi:  10.1107/S1600536810004411
PMCID: PMC2983520

3-(4-Fluoro­phenyl­sulfin­yl)-2-methyl-1-benzofuran

Abstract

In the title compound, C15H11FO2S, the O atom and the 4-fluoro­phenyl group of the 4-fluoro­phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment; the 4-fluoro­phenyl ring is almost perpendicular to this plane [dihedral angle = 89.59 (5)°]. Inter­molecular C—H(...)F and C—H(...)O hydrogen bonds link the mol­ecules together in the crystal structure.

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2008a [triangle],b [triangle],c [triangle]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o564-scheme1.jpg

Experimental

Crystal data

  • C15H11FO2S
  • M r = 274.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o564-efi7.jpg
  • a = 14.992 (1) Å
  • b = 10.4661 (8) Å
  • c = 16.008 (1) Å
  • V = 2511.8 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 173 K
  • 0.50 × 0.50 × 0.25 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.880, T max = 0.937
  • 14681 measured reflections
  • 2878 independent reflections
  • 2315 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.101
  • S = 1.10
  • 2878 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810004411/bg2329sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004411/bg2329Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Molecules containing benzofuran skeleton show significant pharmacological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds are widely occurring in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-methyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2008a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [89.59 (5)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by two different intermolecular hydrogen bonds; the first one a C—H···F contact between the benzene H atom and the fluorine (Table 1, first entry ), and the second, a C—H···O one between one methyl H atom and the oxygen of the S═O unit (Table 1, second entry).

Experimental

77% 3-Chloroperoxybenzoic acid (359 mg, 1.6 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (387 mg, 1.5 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 415–416 K; Rf = 0.63 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
C—H···F and C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: i) - x + 1, y + 1, - z + 1/2; ii) - x + 3/2, y + 1/2, z; iii) - x + 3/2, y ...

Crystal data

C15H11FO2SF(000) = 1136
Mr = 274.30Dx = 1.451 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6779 reflections
a = 14.992 (1) Åθ = 2.4–27.5°
b = 10.4661 (8) ŵ = 0.26 mm1
c = 16.008 (1) ÅT = 173 K
V = 2511.8 (3) Å3Block, colourless
Z = 80.50 × 0.50 × 0.25 mm

Data collection

Bruker SMART APEXII CCD diffractometer2878 independent reflections
Radiation source: Rotating Anode2315 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer opticsRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.4°
[var phi] and ω scansh = −18→19
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −13→13
Tmin = 0.880, Tmax = 0.937l = −15→20
14681 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.101H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0443P)2 + 1.1695P] where P = (Fo2 + 2Fc2)/3
2878 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.65767 (3)0.58401 (4)0.06490 (3)0.03017 (13)
F0.44627 (8)0.14149 (11)0.17017 (8)0.0492 (3)
O10.59892 (8)0.88631 (11)0.19868 (8)0.0342 (3)
O20.75317 (9)0.54319 (13)0.06877 (8)0.0394 (3)
C10.63870 (11)0.69730 (16)0.14353 (10)0.0276 (3)
C20.66131 (10)0.69382 (15)0.23170 (10)0.0265 (3)
C30.70180 (11)0.60712 (17)0.28570 (11)0.0310 (4)
H30.72120.52780.26680.037*
C40.71236 (12)0.64306 (18)0.36876 (11)0.0352 (4)
H40.73840.58620.40620.042*
C50.68456 (13)0.76314 (19)0.39714 (11)0.0374 (4)
H50.69260.78440.45310.045*
C60.64547 (12)0.85086 (18)0.34404 (11)0.0362 (4)
H60.62720.93100.36250.043*
C70.63504 (11)0.81283 (16)0.26195 (11)0.0299 (4)
C80.60331 (11)0.81418 (16)0.12734 (11)0.0306 (4)
C90.57041 (13)0.87542 (19)0.04971 (12)0.0399 (4)
H9A0.58080.81950.00320.060*
H9B0.60150.95450.04100.060*
H9C0.50760.89190.05470.060*
C100.59373 (11)0.45389 (15)0.10668 (10)0.0274 (3)
C110.63578 (12)0.33736 (17)0.11793 (11)0.0316 (4)
H110.69710.33040.11020.038*
C120.58623 (13)0.23096 (17)0.14081 (11)0.0360 (4)
H120.61340.15210.14930.043*
C130.49582 (12)0.24576 (16)0.15059 (11)0.0341 (4)
C140.45240 (12)0.36075 (18)0.14095 (11)0.0359 (4)
H140.39120.36710.14940.043*
C150.50226 (12)0.46665 (16)0.11837 (11)0.0329 (4)
H150.47480.54560.11110.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0341 (2)0.0313 (2)0.0251 (2)−0.00272 (17)−0.00071 (16)−0.00052 (16)
F0.0562 (7)0.0355 (6)0.0558 (7)−0.0171 (5)−0.0002 (6)0.0001 (5)
O10.0408 (7)0.0264 (6)0.0354 (6)0.0025 (5)−0.0010 (5)0.0017 (5)
O20.0311 (6)0.0435 (7)0.0437 (7)−0.0024 (5)0.0071 (6)−0.0052 (6)
C10.0280 (8)0.0273 (8)0.0276 (8)−0.0023 (6)−0.0021 (6)0.0010 (6)
C20.0253 (8)0.0270 (8)0.0273 (8)−0.0037 (6)0.0007 (6)0.0000 (6)
C30.0317 (9)0.0301 (8)0.0311 (9)0.0002 (7)−0.0003 (7)0.0017 (7)
C40.0347 (9)0.0397 (10)0.0312 (9)−0.0023 (7)−0.0049 (7)0.0057 (7)
C50.0409 (10)0.0442 (10)0.0270 (9)−0.0082 (8)−0.0001 (8)−0.0041 (8)
C60.0422 (10)0.0307 (9)0.0357 (9)−0.0039 (7)0.0052 (8)−0.0053 (7)
C70.0310 (9)0.0266 (8)0.0320 (9)−0.0026 (6)0.0005 (7)0.0024 (7)
C80.0287 (8)0.0294 (8)0.0337 (9)−0.0033 (7)−0.0028 (7)0.0019 (7)
C90.0414 (10)0.0371 (10)0.0412 (10)0.0005 (8)−0.0091 (8)0.0097 (8)
C100.0311 (8)0.0274 (8)0.0236 (8)−0.0021 (6)−0.0033 (6)−0.0037 (6)
C110.0306 (9)0.0320 (9)0.0324 (9)0.0038 (7)−0.0009 (7)−0.0045 (7)
C120.0453 (10)0.0265 (8)0.0364 (9)0.0037 (7)−0.0036 (8)−0.0042 (7)
C130.0422 (10)0.0287 (8)0.0314 (9)−0.0099 (7)−0.0028 (7)−0.0040 (7)
C140.0276 (8)0.0398 (10)0.0402 (10)−0.0024 (7)−0.0023 (7)−0.0042 (8)
C150.0304 (8)0.0291 (9)0.0393 (9)0.0028 (7)−0.0049 (7)−0.0010 (7)

Geometric parameters (Å, °)

S—O21.4953 (14)C6—C71.382 (2)
S—C11.7525 (17)C6—H60.9300
S—C101.7948 (17)C8—C91.483 (2)
F—C131.357 (2)C9—H9A0.9600
O1—C81.371 (2)C9—H9B0.9600
O1—C71.382 (2)C9—H9C0.9600
C1—C81.358 (2)C10—C111.385 (2)
C1—C21.452 (2)C10—C151.390 (2)
C2—C31.393 (2)C11—C121.388 (3)
C2—C71.393 (2)C11—H110.9300
C3—C41.391 (2)C12—C131.373 (3)
C3—H30.9300C12—H120.9300
C4—C51.400 (3)C13—C141.377 (3)
C4—H40.9300C14—C151.385 (3)
C5—C61.382 (3)C14—H140.9300
C5—H50.9300C15—H150.9300
O2—S—C1108.60 (8)C1—C8—C9132.78 (17)
O2—S—C10106.21 (8)O1—C8—C9116.38 (15)
C1—S—C1099.15 (8)C8—C9—H9A109.5
C8—O1—C7106.58 (13)C8—C9—H9B109.5
C8—C1—C2107.42 (15)H9A—C9—H9B109.5
C8—C1—S122.38 (13)C8—C9—H9C109.5
C2—C1—S130.04 (13)H9A—C9—H9C109.5
C3—C2—C7119.34 (15)H9B—C9—H9C109.5
C3—C2—C1136.18 (16)C11—C10—C15121.07 (16)
C7—C2—C1104.45 (14)C11—C10—S118.27 (13)
C4—C3—C2117.83 (16)C15—C10—S120.27 (13)
C4—C3—H3121.1C10—C11—C12119.83 (16)
C2—C3—H3121.1C10—C11—H11120.1
C3—C4—C5121.28 (17)C12—C11—H11120.1
C3—C4—H4119.4C13—C12—C11117.90 (16)
C5—C4—H4119.4C13—C12—H12121.1
C6—C5—C4121.55 (17)C11—C12—H12121.1
C6—C5—H5119.2F—C13—C12118.42 (16)
C4—C5—H5119.2F—C13—C14118.04 (16)
C5—C6—C7116.21 (17)C12—C13—C14123.54 (16)
C5—C6—H6121.9C13—C14—C15118.26 (16)
C7—C6—H6121.9C13—C14—H14120.9
C6—C7—O1125.51 (16)C15—C14—H14120.9
C6—C7—C2123.78 (16)C14—C15—C10119.38 (16)
O1—C7—C2110.70 (14)C14—C15—H15120.3
C1—C8—O1110.84 (15)C10—C15—H15120.3
O2—S—C1—C8125.82 (15)C2—C1—C8—O1−1.56 (19)
C10—S—C1—C8−123.54 (15)S—C1—C8—O1−177.39 (11)
O2—S—C1—C2−48.99 (17)C2—C1—C8—C9178.10 (18)
C10—S—C1—C261.65 (16)S—C1—C8—C92.3 (3)
C8—C1—C2—C3−176.81 (19)C7—O1—C8—C11.47 (18)
S—C1—C2—C3−1.4 (3)C7—O1—C8—C9−178.25 (15)
C8—C1—C2—C71.00 (18)O2—S—C10—C11−12.66 (15)
S—C1—C2—C7176.41 (13)C1—S—C10—C11−125.19 (13)
C7—C2—C3—C41.4 (2)O2—S—C10—C15174.41 (13)
C1—C2—C3—C4178.99 (18)C1—S—C10—C1561.88 (15)
C2—C3—C4—C5−1.0 (3)C15—C10—C11—C120.3 (3)
C3—C4—C5—C60.1 (3)S—C10—C11—C12−172.52 (13)
C4—C5—C6—C70.4 (3)C10—C11—C12—C130.7 (3)
C5—C6—C7—O1−178.95 (16)C11—C12—C13—F177.80 (15)
C5—C6—C7—C20.1 (3)C11—C12—C13—C14−1.7 (3)
C8—O1—C7—C6178.34 (17)F—C13—C14—C15−177.99 (15)
C8—O1—C7—C2−0.79 (18)C12—C13—C14—C151.5 (3)
C3—C2—C7—C6−1.0 (3)C13—C14—C15—C10−0.3 (3)
C1—C2—C7—C6−179.27 (16)C11—C10—C15—C14−0.6 (3)
C3—C2—C7—O1178.14 (14)S—C10—C15—C14172.18 (13)
C1—C2—C7—O1−0.12 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Fi0.932.523.346 (2)148
C9—H9B···O2ii0.962.413.189 (2)138

Symmetry codes: (i) −x+1, y+1, −z+1/2; (ii) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2329).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). SADABS APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1395. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1476. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008c). Acta Cryst. E64, o1477. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography