PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m271–m272.
Published online 2010 February 6. doi:  10.1107/S1600536810004198
PMCID: PMC2983515

Decaaqua-1κ5 O,4κ5 O-bis­(μ-nitrilo­triacetato)-1:2κ5 O:N,O′,O′′,O′′′;3:4κ5 N,O,O′,O′′:O′′′-μ-oxido-2:3κ2 O:O-diperoxido-2κ2 O,O′;3κ2 O,O′-1,4-dicopper(II)-2,3-dititanium(IV) hepta­hydrate

Abstract

The tetra­nuclear title compound, [Cu2Ti2(C6H6NO6)2O(O2)2(H2O)10]·7H2O, lies about a twofold rotation axis that passes through the bridging oxide atom. The titanium atom is N,O,O′,O′′-chelated by the nitrilo­triacetate and O,O′-chelated by the peroidxo group and is coordinated to the bridging O atom in an overall penta­gonal-bipyramidal geometry. The O atom of one of the carboxyl­ate –CO2 groups binds to the water-coordinated Cu atom, whose coordination polyhedron is an elongated octa­hedron. Adjacent tetra­nuclear mol­ecules are linked through the coordinated and uncoordinated water mol­ecules by O—H(...)O hydrogen bonds into a three-dimensional network.

Related literature

For the hydrated sodium and ammonium salts of oxobis(nitrilo­triacetatoperoxotitanates), see: Schwarzenbach & Girgis (1975 [triangle]); Zhou et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m271-scheme1.jpg

Experimental

Crystal data

  • [Cu2Ti2(C6H6NO6)2O(O2)2(H2O)10]·7H2O
  • M r = 985.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m271-efi1.jpg
  • a = 14.9312 (10) Å
  • b = 13.2892 (9) Å
  • c = 17.4449 (10) Å
  • β = 100.825 (2)°
  • V = 3399.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.81 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Rigaku R-AXIS Spider IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.694, T max = 1.000
  • 16221 measured reflections
  • 3894 independent reflections
  • 3408 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.075
  • S = 1.08
  • 3894 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2002 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004198/bt5183sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004198/bt5183Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the the National Science Foundation of China (No. 20971045-B0103303) and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

To a suspension of nitrilotriacetic acid (1.91 g, 10 mol) in water (30 ml) was added titanium tetrabutoxide (3.40 ml). After 12 hours, the mixture was allowed to cool to 273 K; 30% hydrogen peroxide (5 ml) was added. The mixture was filtered. The pH of the filtrate was raised to 4.0. Copper chloride dihydrate (1.70 g, 10 mol) was added. The solution was kept at 279 K for a week. Green crystals were collected and washed with water; the yield was 90%. CH&N elemental analysis. Found (Calc. for C12H46O34N2Cu2Ti2): C 14.59 (14.63), H 4.75 (4.71), N 2.82% (2.84%). The crystals do not dissolve in organic solvents.

Refinement

Carbon-bound H-atoms were allowed to ride on their parent atoms (C–H 0.97 Å) with U(H) set to 1.2Ueq(C). The water H-atoms were located in a difference Fourier map, and were initially refined with distance restraints of O–H 0.84 and H···H 1.37 Å; with U(H) set to 1.5Ueq(O). Once found, their positions were fixed.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of Cu2Ti2(O)(O2)2(H2O)10(C6H6NO6)2.7H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Cu2Ti2(C6H6NO6)2O(O2)2(H2O)10]·7H2OF(000) = 2024
Mr = 985.39Dx = 1.925 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13230 reflections
a = 14.9312 (10) Åθ = 3.1–27.5°
b = 13.2892 (9) ŵ = 1.81 mm1
c = 17.4449 (10) ÅT = 293 K
β = 100.825 (2)°Block, green
V = 3399.9 (4) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS Spider IP diffractometer3894 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −19→19
Tmin = 0.694, Tmax = 1.000k = −17→17
16221 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0339P)2 + 4.0704P] where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.31 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.133265 (16)0.615605 (19)0.469933 (13)0.02095 (8)
Ti10.42419 (2)0.63347 (3)0.319688 (18)0.01718 (9)
O10.39888 (10)0.78937 (11)0.30661 (8)0.0241 (3)
O20.36186 (12)0.91179 (12)0.21923 (9)0.0331 (4)
O30.38194 (10)0.48763 (11)0.28694 (8)0.0254 (3)
O40.31766 (13)0.38625 (12)0.19110 (10)0.0355 (4)
O50.31248 (10)0.63343 (12)0.37559 (8)0.0263 (3)
O60.16254 (10)0.64622 (12)0.36729 (8)0.0254 (3)
O70.50000.63818 (16)0.25000.0239 (4)
O80.50228 (10)0.67667 (12)0.41151 (8)0.0280 (3)
O90.49544 (10)0.56625 (12)0.40498 (8)0.0296 (3)
O1w0.00795 (10)0.58467 (12)0.40849 (8)0.0254 (3)
H11−0.03070.62610.41880.038*
H120.00960.58900.36070.038*
O2w0.08783 (12)0.58514 (13)0.56735 (9)0.0358 (4)
H210.05570.53630.57650.054*
H220.09080.62690.60390.054*
O3w0.25339 (11)0.62901 (14)0.53336 (9)0.0360 (4)
H310.26390.62890.58240.054*
H320.29650.65870.51810.054*
O4w0.09054 (10)0.77903 (12)0.47459 (8)0.0274 (3)
H4w10.06380.79310.51150.041*
H4w20.05660.79590.43250.041*
O5w0.17335 (12)0.44158 (13)0.44550 (9)0.0355 (4)
H510.15950.42440.39840.053*
H520.23040.44180.45850.053*
O6w0.12472 (12)0.30720 (14)0.55409 (10)0.0394 (4)
H610.13110.33290.51140.059*
H620.11680.24500.54760.059*
O7w0.36239 (13)0.41472 (15)0.45757 (11)0.0466 (5)
H710.37800.44050.41810.070*
H720.40180.42950.49700.070*
O8w−0.01007 (15)0.80955 (16)0.33263 (11)0.0542 (5)
H81−0.04230.86160.32370.081*
H820.04040.82070.31960.081*
O9w0.50001.04750 (17)0.25000.0319 (5)
H90.45361.01050.24320.048*
N10.30344 (11)0.65163 (12)0.21958 (9)0.0170 (3)
C10.36250 (14)0.82322 (15)0.23904 (11)0.0221 (4)
C20.32017 (14)0.74543 (15)0.17992 (11)0.0224 (4)
H2A0.26310.77090.15040.027*
H2B0.36070.73220.14370.027*
C30.30488 (14)0.56253 (15)0.16936 (11)0.0227 (4)
H3A0.34650.57420.13370.027*
H3B0.24450.55130.13870.027*
C40.33482 (14)0.47085 (16)0.21844 (11)0.0227 (4)
C50.21789 (13)0.65676 (17)0.25076 (11)0.0224 (4)
H5A0.17680.60450.22640.027*
H5B0.18880.72110.23680.027*
C60.23267 (13)0.64436 (15)0.33827 (11)0.0191 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01981 (13)0.02595 (14)0.01754 (13)−0.00436 (9)0.00469 (9)−0.00037 (9)
Ti10.01574 (17)0.02177 (18)0.01442 (16)0.00001 (13)0.00386 (12)0.00014 (12)
O10.0284 (8)0.0214 (7)0.0208 (7)0.0008 (6)0.0002 (6)−0.0029 (5)
O20.0396 (9)0.0210 (8)0.0352 (8)−0.0057 (7)−0.0017 (7)0.0041 (6)
O30.0290 (8)0.0202 (7)0.0249 (7)−0.0009 (6)−0.0005 (6)0.0013 (6)
O40.0464 (10)0.0203 (8)0.0360 (9)0.0004 (7)−0.0019 (7)−0.0053 (6)
O50.0173 (7)0.0438 (9)0.0180 (6)0.0002 (6)0.0042 (5)0.0011 (6)
O60.0192 (7)0.0363 (8)0.0220 (7)−0.0003 (6)0.0070 (5)0.0019 (6)
O70.0205 (10)0.0325 (11)0.0195 (9)0.0000.0062 (8)0.000
O80.0249 (8)0.0365 (9)0.0213 (7)−0.0015 (7)0.0006 (6)−0.0035 (6)
O90.0281 (8)0.0350 (9)0.0243 (7)0.0051 (7)0.0013 (6)0.0063 (6)
O1w0.0247 (8)0.0285 (8)0.0241 (7)−0.0044 (6)0.0076 (6)−0.0029 (6)
O2w0.0535 (11)0.0327 (9)0.0258 (7)−0.0203 (8)0.0190 (7)−0.0081 (7)
O3w0.0266 (8)0.0562 (11)0.0233 (7)−0.0132 (8)0.0001 (6)0.0062 (7)
O4w0.0268 (8)0.0330 (8)0.0224 (7)−0.0010 (6)0.0049 (6)−0.0035 (6)
O5w0.0370 (9)0.0380 (9)0.0310 (8)0.0004 (7)0.0052 (7)−0.0032 (7)
O6w0.0345 (9)0.0426 (10)0.0420 (9)−0.0011 (8)0.0098 (7)−0.0002 (8)
O7w0.0379 (10)0.0545 (12)0.0443 (10)−0.0041 (9)−0.0006 (8)0.0179 (9)
O8w0.0553 (13)0.0572 (13)0.0454 (11)0.0194 (10)−0.0024 (9)0.0064 (9)
O9w0.0229 (11)0.0308 (12)0.0402 (12)0.0000.0008 (9)0.000
N10.0187 (8)0.0169 (8)0.0159 (7)−0.0022 (6)0.0044 (6)−0.0008 (6)
C10.0199 (10)0.0219 (10)0.0247 (9)−0.0014 (8)0.0047 (7)0.0007 (8)
C20.0262 (10)0.0216 (10)0.0186 (9)−0.0034 (8)0.0020 (7)0.0043 (8)
C30.0285 (11)0.0207 (10)0.0183 (9)0.0008 (8)0.0028 (7)−0.0030 (7)
C40.0211 (9)0.0244 (10)0.0233 (9)0.0014 (8)0.0060 (7)−0.0022 (8)
C50.0161 (9)0.0312 (11)0.0198 (9)0.0008 (8)0.0033 (7)0.0006 (8)
C60.0199 (9)0.0183 (9)0.0200 (9)−0.0017 (7)0.0060 (7)−0.0010 (7)

Geometric parameters (Å, °)

Cu1—O3w1.9308 (16)O3w—H310.8399
Cu1—O61.9639 (14)O3w—H320.8400
Cu1—O2w1.9862 (15)O4w—H4w10.8400
Cu1—O1w2.0163 (15)O4w—H4w20.8399
Cu1—O4w2.2693 (16)O5w—H510.8401
Cu1—O5w2.4462 (17)O5w—H520.8400
Ti1—O71.8110 (3)O6w—H610.8400
Ti1—O91.8838 (14)O6w—H620.8400
Ti1—O81.8850 (14)O7w—H710.8400
Ti1—O52.0843 (14)O7w—H720.8401
Ti1—O32.0845 (15)O8w—H810.8400
Ti1—O12.1106 (15)O8w—H820.8400
Ti1—N12.2751 (16)O9w—H90.8401
O1—C11.283 (2)N1—C21.470 (2)
O2—C11.226 (3)N1—C31.475 (2)
O3—C41.287 (2)N1—C51.481 (2)
O4—C41.229 (3)C1—C21.512 (3)
O5—C61.254 (2)C2—H2A0.9700
O6—C61.246 (2)C2—H2B0.9700
O7—Ti1i1.8110 (3)C3—C41.508 (3)
O8—O91.474 (2)C3—H3A0.9700
O1w—H110.8400C3—H3B0.9700
O1w—H120.8401C5—C61.510 (3)
O2w—H210.8400C5—H5A0.9700
O2w—H220.8400C5—H5B0.9700
O3w—Cu1—O699.30 (6)Cu1—O2w—H22122.5
O3w—Cu1—O2w87.61 (7)H21—O2w—H22108.5
O6—Cu1—O2w173.02 (7)Cu1—O3w—H31124.0
O3w—Cu1—O1w173.18 (7)Cu1—O3w—H32123.1
O6—Cu1—O1w84.30 (6)H31—O3w—H32108.4
O2w—Cu1—O1w88.93 (6)Cu1—O4w—H4w1114.7
O3w—Cu1—O4w97.37 (7)Cu1—O4w—H4w2110.6
O6—Cu1—O4w86.94 (6)H4w1—O4w—H4w2108.4
O2w—Cu1—O4w91.20 (6)Cu1—O5w—H51113.8
O1w—Cu1—O4w88.57 (6)Cu1—O5w—H52102.6
O3w—Cu1—O5w87.46 (7)H51—O5w—H52108.4
O6—Cu1—O5w86.18 (6)H61—O6w—H62108.4
O2w—Cu1—O5w95.19 (6)H71—O7w—H72108.4
O1w—Cu1—O5w87.00 (6)H81—O8w—H82108.5
O4w—Cu1—O5w172.15 (5)C2—N1—C3112.23 (14)
O7—Ti1—O9102.42 (6)C2—N1—C5111.62 (16)
O7—Ti1—O8101.25 (5)C3—N1—C5111.40 (15)
O9—Ti1—O846.04 (7)C2—N1—Ti1105.73 (11)
O7—Ti1—O5165.95 (4)C3—N1—Ti1105.83 (11)
O9—Ti1—O590.75 (6)C5—N1—Ti1109.69 (11)
O8—Ti1—O591.38 (6)O2—C1—O1125.10 (19)
O7—Ti1—O392.48 (8)O2—C1—C2118.93 (18)
O9—Ti1—O382.68 (6)O1—C1—C2115.94 (17)
O8—Ti1—O3128.55 (6)N1—C2—C1110.17 (15)
O5—Ti1—O384.28 (6)N1—C2—H2A109.6
O7—Ti1—O190.88 (8)C1—C2—H2A109.6
O9—Ti1—O1127.87 (6)N1—C2—H2B109.6
O8—Ti1—O182.10 (6)C1—C2—H2B109.6
O5—Ti1—O184.72 (6)H2A—C2—H2B108.1
O3—Ti1—O1147.58 (6)N1—C3—C4110.31 (15)
O7—Ti1—N189.21 (4)N1—C3—H3A109.6
O9—Ti1—N1154.83 (7)C4—C3—H3A109.6
O8—Ti1—N1153.44 (7)N1—C3—H3B109.6
O5—Ti1—N176.74 (6)C4—C3—H3B109.6
O3—Ti1—N174.50 (6)H3A—C3—H3B108.1
O1—Ti1—N173.32 (6)O4—C4—O3123.8 (2)
C1—O1—Ti1118.67 (13)O4—C4—C3120.05 (18)
C4—O3—Ti1120.00 (13)O3—C4—C3116.06 (18)
C6—O5—Ti1121.52 (12)N1—C5—C6113.20 (16)
C6—O6—Cu1135.58 (13)N1—C5—H5A108.9
Ti1—O7—Ti1i176.04 (14)C6—C5—H5A108.9
O9—O8—Ti166.94 (8)N1—C5—H5B108.9
O8—O9—Ti167.02 (8)C6—C5—H5B108.9
Cu1—O1w—H11111.0H5A—C5—H5B107.8
Cu1—O1w—H12108.4O6—C6—O5125.48 (17)
H11—O1w—H12108.4O6—C6—C5115.73 (17)
Cu1—O2w—H21128.2O5—C6—C5118.79 (17)
O7—Ti1—O1—C160.95 (14)O1—Ti1—N1—C234.18 (11)
O9—Ti1—O1—C1167.48 (14)O7—Ti1—N1—C362.26 (13)
O8—Ti1—O1—C1162.18 (15)O9—Ti1—N1—C3−56.2 (2)
O5—Ti1—O1—C1−105.68 (15)O8—Ti1—N1—C3176.38 (14)
O3—Ti1—O1—C1−35.1 (2)O5—Ti1—N1—C3−118.19 (12)
N1—Ti1—O1—C1−27.96 (14)O3—Ti1—N1—C3−30.53 (11)
O7—Ti1—O3—C4−67.06 (15)O1—Ti1—N1—C3153.42 (13)
O9—Ti1—O3—C4−169.27 (15)O7—Ti1—N1—C5−177.46 (14)
O8—Ti1—O3—C4−173.57 (14)O9—Ti1—N1—C564.1 (2)
O5—Ti1—O3—C499.23 (15)O8—Ti1—N1—C5−63.3 (2)
O1—Ti1—O3—C428.5 (2)O5—Ti1—N1—C52.08 (12)
N1—Ti1—O3—C421.43 (14)O3—Ti1—N1—C589.74 (13)
O7—Ti1—O5—C60.3 (4)O1—Ti1—N1—C5−86.31 (13)
O9—Ti1—O5—C6−159.50 (16)Ti1—O1—C1—O2−163.57 (17)
O8—Ti1—O5—C6154.45 (16)Ti1—O1—C1—C214.5 (2)
O3—Ti1—O5—C6−76.94 (16)C3—N1—C2—C1−152.71 (16)
O1—Ti1—O5—C672.52 (16)C5—N1—C2—C181.41 (19)
N1—Ti1—O5—C6−1.55 (15)Ti1—N1—C2—C1−37.80 (18)
O3w—Cu1—O6—C621.7 (2)O2—C1—C2—N1−163.33 (19)
O1w—Cu1—O6—C6−152.5 (2)O1—C1—C2—N118.4 (2)
O4w—Cu1—O6—C6118.6 (2)C2—N1—C3—C4151.50 (17)
O5w—Cu1—O6—C6−65.1 (2)C5—N1—C3—C4−82.5 (2)
O7—Ti1—O8—O9−96.49 (10)Ti1—N1—C3—C436.65 (18)
O5—Ti1—O8—O989.71 (9)Ti1—O3—C4—O4170.04 (17)
O3—Ti1—O8—O95.92 (11)Ti1—O3—C4—C3−6.4 (2)
O1—Ti1—O8—O9174.19 (9)N1—C3—C4—O4160.50 (19)
N1—Ti1—O8—O9152.02 (13)N1—C3—C4—O3−22.9 (2)
O7—Ti1—O9—O893.73 (10)C2—N1—C5—C6−119.28 (18)
O5—Ti1—O9—O8−91.20 (9)C3—N1—C5—C6114.39 (18)
O3—Ti1—O9—O8−175.33 (9)Ti1—N1—C5—C6−2.4 (2)
O1—Ti1—O9—O8−7.30 (11)Cu1—O6—C6—O5−11.1 (3)
N1—Ti1—O9—O8−150.44 (14)Cu1—O6—C6—C5169.07 (15)
O7—Ti1—N1—C2−56.98 (13)Ti1—O5—C6—O6−179.24 (16)
O9—Ti1—N1—C2−175.44 (15)Ti1—O5—C6—C50.6 (3)
O8—Ti1—N1—C257.15 (19)N1—C5—C6—O6−178.72 (17)
O5—Ti1—N1—C2122.57 (13)N1—C5—C6—O51.4 (3)
O3—Ti1—N1—C2−149.77 (13)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H11···O6wii0.841.802.627 (2)169
O1w—H12···O9wiii0.841.992.789 (1)159
O2w—H21···O1wii0.841.912.746 (2)173
O2w—H22···O1iv0.841.902.737 (2)174
O3w—H31···O4v0.841.932.746 (2)165
O3w—H32···O4wiv0.841.862.658 (2)158
O4w—H4w1···O8iv0.841.852.693 (2)176
O4w—H4w2···O8w0.841.852.675 (2)169
O5w—H51···O2vi0.842.022.850 (2)168
O5w—H52···O7w0.842.012.813 (3)161
O6w—H61···O5w0.842.022.797 (2)153
O6w—H62···O7wvii0.842.152.965 (3)164
O7w—H71···O30.842.383.195 (2)163
O7w—H72···O9viii0.842.072.900 (2)168
O8w—H81···O3ix0.842.062.890 (2)172
O8w—H82···O4x0.842.333.148 (3)164
O9w—H9···O20.841.892.716 (2)170

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x−1/2, y−1/2, z; (iv) −x+1/2, −y+3/2, −z+1; (v) x, −y+1, z+1/2; (vi) −x+1/2, y−1/2, −z+1/2; (vii) −x+1/2, −y+1/2, −z+1; (viii) −x+1, −y+1, −z+1; (ix) x−1/2, y+1/2, z; (x) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5183).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2002). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Schwarzenbach, D. & Girgis, K. (1975). Helv. Chim. Acta, 58, 2391–2398.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.
  • Zhou, Z.-H., Hong, Q.-M. & Deng, Y.-F. (2004). Huaxue Xuebao, 62, 2379–2385.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography