PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m331.
Published online 2010 February 24. doi:  10.1107/S160053681000557X
PMCID: PMC2983514

catena-Poly[[(dimethyl­formamide-κO)cobalt(II)]-bis­[μ-(4-nitro­phenyl)­cyanamido]-κ2 N 1:N 32 N 3:N 1]

Abstract

In the title coordination polymer, [Co(C7H4N3O2)2(C3H7NO)]n, the CoII atom is five-coordinated in a distorted square-pyramidal CoON4 geometry with the O atom from a dimethyl­formamide mol­ecule in an equatorial position. The bridging phenyl­cyanamide anions generate an infinite chain propagating in [001].

Related literature

For background to models of ligand bonding, see: Storhoff & Lewis (1977 [triangle]); Chisholm et al. (1987 [triangle]); Crutchley et al. (1999 [triangle]). For related structures, see: Escuer et al. (2003a [triangle],b [triangle], 2004 [triangle]); Chiniforoshan et al. (2009 [triangle]). For further synthetic details, see: Crutchley & Naklicki (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m331-scheme1.jpg

Experimental

Crystal data

  • [Co(C7H4N3O2)2(C3H7NO)]
  • M r = 456.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m331-efi1.jpg
  • a = 21.8692 (16) Å
  • b = 8.8517 (6) Å
  • c = 9.9827 (8) Å
  • β = 100.151 (6)°
  • V = 1902.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 120 K
  • 0.30 × 0.12 × 0.10 mm

Data collection

  • STOE IPDS II diffractometer
  • Absorption correction: numerical [optical; X-RED and X-SHAPE (Stoe & Cie, 2005 [triangle])] T min = 0.740, T max = 0.800
  • 22258 measured reflections
  • 5131 independent reflections
  • 4161 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.104
  • S = 1.20
  • 5131 reflections
  • 273 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000557X/hb5302sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000557X/hb5302Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge Isfahan University of Technology for financial support.

supplementary crystallographic information

Comment

Phenylcyanamide ligands (Pcyd) are interesting and practically ligands from the synthetic and magnetic point of view. Recently, we have reported the first magnetic measurements on systems with different dimensionality containing the MnII-(NCN)2- unit (Escuer et al., 2003a,b) the cyanamido group(NCN) being coordinated in the end-to-end mode. From the synthetic point of view, pcyd ligands offer a wide range of possibilities based on the use different X-pcyd derivatives which can coordinate properties of the two nitrogen atoms: one N-nitrile, which coordinate preferently and one N-amide atom, with characteristic bond parameters in each case (Escuer et al., 2004). Following our work with this family of ligands, we now report four new CoII-Xpcyd compounds (using 4-nitro,4-fluoro,4-chloro,4-bromophenylcyanamide) in combination with the dimethylformamide ligand. These compounds contain the unusual end-to-end phenyl-cyanamide bridge and give supramolecular one dimensional network by means of H-bonds involving the N-amid atoms of the phenylcyanamide ligands. Side-on coordination of a nitrile group is extremely rare (Storhoff & Lewis, 1977) but is more common for cyanamide ligands due to the participation of the nitrile lone pair in bridging interaction (Chisholm et al., 1987). We are attempting to construct conductive polymer chains that are cross-linked by cyanamide groups to a coordination complex. Conductivity within this linked system will arise provided the polymer p-pi orbitals and the metal dp orbital are both symmetry and energy matched (Crutchley et al., 1999). More recently various aromatic cyanamide complexes have been studied by x-ray crystallography (Chiniforoshan et al., 2009).

We report here the synthesis and crystal structure of the title complex, (I).

In the molecule of the title compound, (I), (Fig. 1) the selected bond lengths and angles are listed in Table 1. in this molecule, the {Co(4—NO2-pcyd)2(DMF)}n one-dimensional chain coordination polymer bridged by 4-NO2-phenylcyanamide. Each cobalt atom has a distored square pyramidal geometry, that nitrogen atoms are in equatirial position and oxygen atom from DMF molecules is in axial position, Table 1. The dihedral angle between adjacent phenyl rings in the polymeric chain is 89.02 (10) °.

Experimental

4-Nitrophenylcyanamide (Crutchley et al.,1989) (0.326 g, 0.5 mmol) was dissolved in methanol (25 ml) and was added slowly to a solution of cobalt(II) acetate (0.249 g, 0.25 mmol) in methanol (25 ml). The mixture was stirred for 5 h. The resulting solid was filtered off and violet needles of (I) obtained by dissolving in DMF then diffused by acetonitrile after 2 week.

Refinement

All of the H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic and aldehyde H atoms and with C—H = 0.93 Å for methyl hydrogens, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of (I) (30% probability displacement ellipsoids), (i) x,-y+1/2,z-1/2.

Crystal data

[Co(C7H4N3O2)2(C3H7NO)]F(000) = 932
Mr = 456.29Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 987 reflections
a = 21.8692 (16) Åθ = 1.9–29.3°
b = 8.8517 (6) ŵ = 0.95 mm1
c = 9.9827 (8) ÅT = 120 K
β = 100.151 (6)°Needle, violet
V = 1902.2 (2) Å30.3 × 0.12 × 0.1 mm
Z = 4

Data collection

STOE IPDS II diffractometer5131 independent reflections
Radiation source: fine-focus sealed tube4161 reflections with I > 2σ(I)
graphiteRint = 0.074
rotation method scansθmax = 29.3°, θmin = 1.9°
Absorption correction: numerical [optical; X-RED and X-SHAPE (Stoe & Cie, 2005)]h = −30→30
Tmin = 0.740, Tmax = 0.800k = −12→12
22258 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.20w = 1/[σ2(Fo2) + (0.0287P)2 + 1.1087P] where P = (Fo2 + 2Fc2)/3
5131 reflections(Δ/σ)max = 0.023
273 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.40669 (12)0.4544 (3)0.2890 (2)0.0367 (5)
H10.37650.51070.23320.044*
C20.46736 (13)0.4600 (3)0.2693 (3)0.0418 (6)
H20.47820.52000.20070.050*
C30.51209 (12)0.3757 (3)0.3524 (3)0.0411 (6)
C40.49727 (12)0.2877 (3)0.4559 (3)0.0432 (6)
H40.52790.23260.51160.052*
C50.43659 (12)0.2821 (3)0.4759 (2)0.0392 (6)
H50.42640.22280.54570.047*
C60.39001 (10)0.3643 (3)0.3927 (2)0.0299 (4)
C70.31504 (10)0.2978 (3)0.5177 (2)0.0295 (4)
C80.08686 (12)0.0534 (3)0.6636 (2)0.0391 (6)
H80.1158−0.01630.70600.047*
C90.02663 (13)0.0479 (4)0.6859 (3)0.0455 (7)
H90.0145−0.02590.74200.055*
C10−0.01572 (12)0.1535 (4)0.6238 (3)0.0457 (7)
C110.00043 (13)0.2613 (4)0.5372 (3)0.0479 (7)
H11−0.02890.33000.49480.057*
C120.06063 (13)0.2663 (3)0.5141 (3)0.0421 (6)
H120.07200.33880.45570.051*
C130.10495 (11)0.1630 (3)0.5777 (2)0.0320 (5)
C140.17962 (11)0.2310 (3)0.4517 (2)0.0329 (5)
C150.26634 (13)−0.1792 (3)0.7963 (3)0.0404 (6)
H150.2886−0.14600.87910.049*
C160.22430 (18)−0.3852 (4)0.6534 (3)0.0590 (8)
H16A0.2522−0.44190.60840.071*
H16B0.2065−0.30410.59560.071*
H16C0.1918−0.45030.67260.071*
C170.28133 (19)−0.4310 (4)0.8862 (4)0.0623 (9)
H17A0.2471−0.48040.91630.075*
H17B0.3056−0.37810.96120.075*
H17C0.3068−0.50500.85220.075*
Co10.246533 (14)0.14018 (3)0.72734 (3)0.02718 (9)
N10.57585 (12)0.3801 (4)0.3298 (3)0.0590 (7)
N20.32762 (9)0.3587 (2)0.40707 (17)0.0315 (4)
N30.29935 (9)0.2463 (2)0.61327 (19)0.0341 (4)
N4−0.07929 (13)0.1482 (4)0.6502 (3)0.0655 (8)
N50.16710 (9)0.1668 (2)0.56040 (18)0.0331 (4)
N60.19618 (10)0.2829 (3)0.3580 (2)0.0429 (5)
N70.25790 (11)−0.3243 (2)0.7787 (2)0.0417 (5)
O10.61519 (11)0.3055 (4)0.4033 (3)0.0845 (9)
O20.58758 (13)0.4571 (5)0.2362 (4)0.1081 (12)
O3−0.11534 (13)0.2481 (5)0.6018 (3)0.0965 (11)
O4−0.09355 (14)0.0446 (5)0.7210 (3)0.1003 (11)
O50.24632 (10)−0.0826 (2)0.70889 (18)0.0443 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0355 (12)0.0426 (14)0.0319 (12)−0.0053 (11)0.0057 (9)0.0042 (10)
C20.0403 (14)0.0475 (15)0.0397 (14)−0.0138 (12)0.0128 (11)−0.0023 (11)
C30.0308 (12)0.0495 (15)0.0439 (14)−0.0093 (11)0.0090 (10)−0.0164 (12)
C40.0332 (13)0.0552 (17)0.0398 (14)0.0041 (12)0.0024 (10)−0.0030 (12)
C50.0384 (13)0.0484 (15)0.0308 (12)0.0026 (11)0.0063 (10)0.0051 (11)
C60.0299 (10)0.0337 (11)0.0258 (10)−0.0057 (10)0.0040 (8)−0.0036 (9)
C70.0275 (10)0.0345 (11)0.0253 (10)−0.0014 (9)0.0014 (8)−0.0020 (9)
C80.0400 (14)0.0454 (15)0.0327 (12)−0.0077 (11)0.0083 (10)0.0024 (10)
C90.0438 (15)0.0599 (18)0.0349 (13)−0.0200 (13)0.0126 (11)−0.0042 (12)
C100.0331 (12)0.071 (2)0.0344 (12)−0.0112 (13)0.0104 (10)−0.0166 (13)
C110.0357 (14)0.067 (2)0.0403 (14)0.0050 (13)0.0050 (11)−0.0051 (13)
C120.0382 (14)0.0554 (17)0.0331 (13)−0.0019 (12)0.0073 (10)0.0057 (11)
C130.0306 (11)0.0429 (14)0.0223 (10)−0.0048 (10)0.0038 (8)−0.0019 (9)
C140.0255 (11)0.0475 (14)0.0250 (11)−0.0020 (10)0.0021 (8)0.0006 (9)
C150.0488 (15)0.0371 (13)0.0353 (13)−0.0011 (11)0.0070 (11)−0.0001 (9)
C160.068 (2)0.0443 (17)0.065 (2)−0.0063 (15)0.0124 (16)−0.0074 (14)
C170.081 (3)0.0446 (17)0.063 (2)−0.0005 (17)0.0191 (18)0.0159 (15)
Co10.03239 (15)0.02822 (15)0.02268 (13)0.00103 (14)0.00971 (10)0.00032 (12)
N10.0367 (13)0.077 (2)0.0663 (17)−0.0085 (13)0.0166 (12)−0.0189 (15)
N20.0314 (9)0.0402 (10)0.0232 (8)−0.0030 (9)0.0053 (7)0.0037 (8)
N30.0279 (10)0.0477 (12)0.0263 (9)−0.0028 (8)0.0037 (7)0.0051 (8)
N40.0382 (14)0.108 (3)0.0527 (15)−0.0140 (17)0.0163 (12)−0.0224 (17)
N50.0303 (9)0.0470 (12)0.0226 (9)−0.0016 (8)0.0062 (7)0.0051 (8)
N60.0295 (10)0.0722 (16)0.0268 (10)−0.0046 (10)0.0046 (8)0.0128 (10)
N70.0458 (12)0.0328 (11)0.0499 (12)−0.0012 (10)0.0180 (10)0.0008 (9)
O10.0370 (12)0.122 (3)0.094 (2)0.0105 (15)0.0106 (13)−0.0062 (18)
O20.0537 (17)0.154 (3)0.128 (3)−0.0070 (18)0.0467 (18)0.039 (2)
O30.0409 (14)0.154 (3)0.097 (2)0.0129 (17)0.0192 (14)−0.003 (2)
O40.0613 (17)0.146 (3)0.105 (2)−0.0246 (19)0.0463 (16)0.010 (2)
O50.0588 (12)0.0305 (8)0.0408 (10)0.0021 (8)0.0012 (9)0.0004 (7)

Geometric parameters (Å, °)

C1—C21.376 (4)C13—N51.400 (3)
C1—C61.405 (3)C14—N61.157 (3)
C1—H10.9300C14—N51.296 (3)
C2—C31.385 (4)C15—O51.245 (3)
C2—H20.9300C15—N71.305 (3)
C3—C41.377 (4)C15—H150.9300
C3—N11.452 (3)C16—N71.440 (4)
C4—C51.377 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.400 (3)C16—H16C0.9600
C5—H50.9300C17—N71.453 (4)
C6—N21.398 (3)C17—H17A0.9600
C7—N31.162 (3)C17—H17B0.9600
C7—N21.301 (3)C17—H17C0.9600
C8—C91.375 (4)Co1—O51.9807 (19)
C8—C131.397 (3)Co1—N31.994 (2)
C8—H80.9300Co1—N52.198 (2)
C9—C101.383 (4)Co1—N6i1.971 (2)
C9—H90.9300Co1—N2i2.2896 (19)
C10—C111.375 (4)N1—O21.220 (4)
C10—N41.461 (3)N1—O11.222 (4)
C11—C121.377 (4)N2—Co1ii2.2896 (19)
C11—H110.9300N4—O31.226 (5)
C12—C131.400 (4)N4—O41.231 (4)
C12—H120.9300N6—Co1ii1.971 (2)
C2—C1—C6120.5 (2)N7—C16—H16A109.5
C2—C1—H1119.7N7—C16—H16B109.5
C6—C1—H1119.7H16A—C16—H16B109.5
C1—C2—C3119.5 (2)N7—C16—H16C109.5
C1—C2—H2120.3H16A—C16—H16C109.5
C3—C2—H2120.3H16B—C16—H16C109.5
C4—C3—C2121.3 (2)N7—C17—H17A109.5
C4—C3—N1119.4 (3)N7—C17—H17B109.5
C2—C3—N1119.2 (3)H17A—C17—H17B109.5
C3—C4—C5119.3 (3)N7—C17—H17C109.5
C3—C4—H4120.3H17A—C17—H17C109.5
C5—C4—H4120.3H17B—C17—H17C109.5
C4—C5—C6120.9 (2)N6i—Co1—O5114.40 (10)
C4—C5—H5119.5N6i—Co1—N3131.52 (10)
C6—C5—H5119.5O5—Co1—N3114.07 (9)
N2—C6—C5122.8 (2)N6i—Co1—N590.32 (8)
N2—C6—C1118.7 (2)O5—Co1—N592.72 (8)
C5—C6—C1118.4 (2)N3—Co1—N588.66 (8)
N3—C7—N2175.0 (2)N6i—Co1—N2i85.75 (8)
C9—C8—C13120.4 (3)O5—Co1—N2i93.78 (8)
C9—C8—H8119.8N3—Co1—N2i89.94 (8)
C13—C8—H8119.8N5—Co1—N2i173.35 (8)
C8—C9—C10119.3 (3)O2—N1—O1122.8 (3)
C8—C9—H9120.4O2—N1—C3118.1 (3)
C10—C9—H9120.4O1—N1—C3119.1 (3)
C11—C10—C9121.7 (2)C7—N2—C6117.25 (19)
C11—C10—N4119.6 (3)C7—N2—Co1ii114.63 (15)
C9—C10—N4118.7 (3)C6—N2—Co1ii123.69 (13)
C10—C11—C12119.1 (3)C7—N3—Co1159.71 (19)
C10—C11—H11120.4O3—N4—O4123.6 (3)
C12—C11—H11120.4O3—N4—C10118.2 (3)
C11—C12—C13120.6 (3)O4—N4—C10118.2 (3)
C11—C12—H12119.7C14—N5—C13117.8 (2)
C13—C12—H12119.7C14—N5—Co1115.24 (16)
C8—C13—C12118.9 (2)C13—N5—Co1123.95 (14)
C8—C13—N5118.6 (2)C14—N6—Co1ii164.6 (2)
C12—C13—N5122.5 (2)C15—N7—C16121.6 (3)
N6—C14—N5173.8 (3)C15—N7—C17121.1 (3)
O5—C15—N7123.9 (3)C16—N7—C17117.3 (3)
O5—C15—H15118.0C15—O5—Co1128.61 (18)
N7—C15—H15118.0
C6—C1—C2—C30.2 (4)C1—C6—N2—Co1ii37.3 (3)
C1—C2—C3—C4−0.9 (4)N6i—Co1—N3—C7−104.7 (6)
C1—C2—C3—N1179.0 (2)O5—Co1—N3—C776.9 (6)
C2—C3—C4—C50.8 (4)N5—Co1—N3—C7−15.5 (6)
N1—C3—C4—C5−179.1 (3)N2i—Co1—N3—C7171.0 (6)
C3—C4—C5—C60.0 (4)C11—C10—N4—O3−5.4 (4)
C4—C5—C6—N2178.2 (2)C9—C10—N4—O3175.4 (3)
C4—C5—C6—C1−0.7 (4)C11—C10—N4—O4175.3 (3)
C2—C1—C6—N2−178.4 (2)C9—C10—N4—O4−3.9 (4)
C2—C1—C6—C50.7 (4)C8—C13—N5—C14157.8 (2)
C13—C8—C9—C10−0.9 (4)C12—C13—N5—C14−23.2 (4)
C8—C9—C10—C111.9 (4)C8—C13—N5—Co1−42.7 (3)
C8—C9—C10—N4−178.9 (3)C12—C13—N5—Co1136.2 (2)
C9—C10—C11—C12−1.4 (4)N6i—Co1—N5—C14133.7 (2)
N4—C10—C11—C12179.4 (3)O5—Co1—N5—C14−111.83 (19)
C10—C11—C12—C130.0 (4)N3—Co1—N5—C142.21 (19)
C9—C8—C13—C12−0.5 (4)N6i—Co1—N5—C13−26.2 (2)
C9—C8—C13—N5178.5 (2)O5—Co1—N5—C1388.3 (2)
C11—C12—C13—C80.9 (4)N3—Co1—N5—C13−157.7 (2)
C11—C12—C13—N5−178.0 (2)O5—C15—N7—C160.4 (4)
C4—C3—N1—O2178.9 (3)O5—C15—N7—C17−178.6 (3)
C2—C3—N1—O2−1.0 (5)N7—C15—O5—Co1172.1 (2)
C4—C3—N1—O1−0.1 (4)N6i—Co1—O5—C15−63.6 (3)
C2—C3—N1—O1−180.0 (3)N3—Co1—O5—C15115.0 (2)
C5—C6—N2—C713.3 (4)N5—Co1—O5—C15−155.2 (2)
C1—C6—N2—C7−167.7 (2)N2i—Co1—O5—C1523.4 (3)
C5—C6—N2—Co1ii−141.7 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5302).

References

  • Chiniforoshan, H., Jalilpour, S., Shirinfar, B. & Khavasi, H. R. (2009). Acta Cryst. E65, m386. [PMC free article] [PubMed]
  • Chisholm, M. H., Hufman, J. C. & Marchant, N. S. (1987). Organometallics, 6, 1073–1080.
  • Crutchley, R. J., Desjardins, P. & Yap, G. P. A. (1999). Inorg. Chem.38, 5901–5905.
  • Crutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem.28, 1955–1958.
  • Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2003a). Dalton Trans. pp. 2121–2125.
  • Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2003b). Inorg. Chem.42, 541–551. [PubMed]
  • Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409–1417.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  • Storhoff, B. N. & Lewis, H. C. (1977). J. Coord. Chem. Rev.23, 1–29.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography