PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o530.
Published online 2010 February 6. doi:  10.1107/S1600536810003557
PMCID: PMC2983510

N-(Cyano­meth­yl)benzamide

Abstract

In the structure of the title compound, C9H8N2O, the amide group is twisted by a dihedral angle of 21.86 (7)° with respect to the benzene ring, while the planes of the benzene ring and cyano­methyl group form a dihedral angle of 53.13 (11)°. In the crystal structure, mol­ecules are linked via N—H(...)O hydrogen bonds, forming a chain running parallel to the a axis.

Related literature

For the biological activity and medicinal properties of tetra­zole derivatives, see: Smissman et al. (1976 [triangle]); McGuire et al. (1990 [triangle]); Lunn et al. (1992 [triangle]); Itoh et al. (1995 [triangle]); Upadhayaya et al. (2004 [triangle]); Wu et al. (2008 [triangle]); Rostom et al. (2009 [triangle]); Burger (1991 [triangle]); Singh et al. (1980 [triangle]). For the synthetic procedure, see: Adams & Langley (1941a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o530-scheme1.jpg

Experimental

Crystal data

  • C9H8N2O
  • M r = 160.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o530-efi1.jpg
  • a = 9.8623 (5) Å
  • b = 8.0576 (4) Å
  • c = 20.9268 (9) Å
  • V = 1662.98 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.33 × 0.28 × 0.22 mm

Data collection

  • Bruker X8 APEXII CCD area-detector diffractometer
  • 11132 measured reflections
  • 1920 independent reflections
  • 1433 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.109
  • S = 1.02
  • 1920 reflections
  • 141 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003557/dn2533sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003557/dn2533Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CNRST Morocco for financial support (Programs PROTAS D13/03).

supplementary crystallographic information

Comment

Tetrazoles derivatives are an important class of compounds, which can be used in the fields of bioorganic and medicinal chemistry as antibacterials, anti-cancer, heart disease, neurodegenerative disease, and antifungal activity (Smissman et al.,1976; McGuire et al., 1990; Lunn et al., 1992; Itoh et al., 1995; Upadhayaya et al., 2004; Wu et al., 2008; Rostom et al., 2009.

The tetrazole moiety has long been established as a bioisostere of a carboxyl unit (Burger, 1991). A major advantage of tetrazoles over carboxylic acids is that they are resistant to many biological metabolic degradation pathways (Singh et al., 1980).

With the aim of developing new tetrazolic derived, an analog isosteric of the glycine, we have prepared N-(cyanomethyl)benzamide, a key intermediate, starting from aminoacetonitrile hydrogen sulphate.

In the title compound, the amide group is rotated by 21,86° out of the plane of the benzene ring (Fig. 1). The crystal packing is stabilized by N—H···O hydrogen bonds (Table 1) to form infinite chains parallel to the a axis (Fig. 2).

Experimental

Aminoacetonitrile hydrogen sulphate was prepared in two steps from technical formaldehyde (Adams & Langley, 1941a,b).

To a solution of 10 mmol s of aminoacetonitrile hydrogen sulfate in 10 ml of methylene chloride, triethylamine was added until neutral pH at cold temperature (0 <T< 5°C ), then 11 mmol s of Benzoyl chloride was added at the same temperature. The mixture was stirred at 0°C for 1 hour. The whole is taken to room temperature and left under magnetic agitation during 16 hours. After reaction, the mixture was washed 3 times with a solution of citric acid 15%; then, the organic solution is dried over sodium sulphate and evaporated under reduced pressure. The residue was crystallized from a mixture ether/hexane (1:1) to give white solid in 82% yield. m.p.: 138- 140°C .

The structure of the product was established on the basis of NMR spectroscopy (1H, 13C ), MS data and elemental analysis.

Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

All H atoms were located in a difference map and refined without any distance restraints.

Figures

Fig. 1.
: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
: Partial packing view showing the chain generated by N—H···O hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry code: (i) x+1/2,y,-z+1/2].

Crystal data

C9H8N2ODx = 1.280 Mg m3
Mr = 160.17Melting point: 413 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3689 reflections
a = 9.8623 (5) Åθ = 2.5–27.2°
b = 8.0576 (4) ŵ = 0.09 mm1
c = 20.9268 (9) ÅT = 296 K
V = 1662.98 (14) Å3Block, colourless
Z = 80.33 × 0.28 × 0.22 mm
F(000) = 672

Data collection

Bruker X8 APEXII CCD area-detector diffractometer1433 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
graphiteθmax = 27.6°, θmin = 2.8°
[var phi] and ω scansh = −12→12
11132 measured reflectionsk = −10→10
1920 independent reflectionsl = −26→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2439P] where P = (Fo2 + 2Fc2)/3
1920 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.24170 (14)0.39220 (16)0.13675 (7)0.0488 (3)
C20.25299 (17)0.43033 (18)0.07283 (7)0.0591 (4)
C30.36704 (17)0.38418 (18)0.03941 (7)0.0592 (4)
C40.47054 (16)0.30131 (19)0.06980 (7)0.0552 (4)
C50.46079 (13)0.26308 (16)0.13418 (6)0.0448 (3)
C60.34534 (11)0.30793 (14)0.16810 (6)0.0387 (3)
C70.32434 (11)0.26377 (15)0.23629 (6)0.0415 (3)
C80.41628 (14)0.17663 (17)0.33761 (6)0.0498 (3)
C90.37055 (14)0.31427 (19)0.37822 (6)0.0529 (3)
O10.21031 (8)0.25889 (15)0.26031 (5)0.0645 (3)
N10.43271 (11)0.22652 (14)0.27184 (5)0.0456 (3)
N20.33580 (17)0.4211 (2)0.40988 (7)0.0792 (4)
H10.1646 (16)0.4224 (18)0.1609 (7)0.064 (4)*
H20.1826 (17)0.489 (2)0.0525 (8)0.075 (5)*
H30.3723 (16)0.410 (2)−0.0064 (8)0.073 (5)*
H40.5496 (17)0.267 (2)0.0484 (8)0.067 (5)*
H50.5302 (16)0.2004 (18)0.1546 (7)0.054 (4)*
H60.5098 (18)0.2419 (17)0.2585 (7)0.053 (4)*
H70.5037 (17)0.1326 (19)0.3548 (8)0.065 (4)*
H80.3480 (15)0.0870 (17)0.3409 (7)0.057 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0411 (7)0.0482 (7)0.0571 (8)0.0051 (6)−0.0007 (6)0.0009 (6)
C20.0638 (9)0.0554 (8)0.0581 (8)0.0075 (7)−0.0087 (7)0.0066 (7)
C30.0733 (11)0.0587 (8)0.0457 (7)−0.0087 (8)−0.0014 (7)0.0005 (6)
C40.0508 (8)0.0631 (8)0.0517 (7)−0.0064 (7)0.0110 (6)−0.0100 (6)
C50.0333 (6)0.0512 (7)0.0500 (7)−0.0016 (5)0.0015 (5)−0.0043 (5)
C60.0290 (5)0.0400 (5)0.0470 (6)−0.0038 (5)−0.0013 (5)−0.0023 (5)
C70.0240 (5)0.0503 (6)0.0502 (7)−0.0016 (5)0.0027 (5)0.0016 (5)
C80.0373 (7)0.0564 (8)0.0558 (7)0.0041 (6)0.0010 (6)0.0149 (6)
C90.0435 (7)0.0665 (8)0.0487 (7)0.0021 (6)0.0020 (6)0.0156 (7)
O10.0224 (4)0.1126 (9)0.0586 (6)−0.0004 (5)0.0037 (4)0.0142 (5)
N10.0236 (5)0.0632 (7)0.0500 (6)−0.0002 (5)0.0027 (4)0.0093 (5)
N20.0867 (11)0.0836 (9)0.0675 (8)0.0108 (8)0.0100 (8)−0.0003 (7)

Geometric parameters (Å, °)

C1—C21.377 (2)C5—H50.952 (16)
C1—C61.3915 (17)C6—C71.4852 (17)
C1—H10.945 (16)C7—O11.2324 (13)
C2—C31.376 (2)C7—N11.3364 (15)
C2—H20.940 (18)C8—N11.4430 (17)
C3—H30.984 (16)C8—C91.468 (2)
C4—C31.376 (2)C8—H80.990 (15)
C4—H40.940 (17)C8—H70.999 (17)
C5—C41.3854 (19)C9—N21.1389 (19)
C5—C61.3896 (17)N1—H60.820 (17)
C5—C6—C1119.21 (12)N1—C8—H8110.2 (8)
C5—C6—C7122.87 (11)C9—C8—H8107.6 (8)
C1—C6—C7117.86 (11)N1—C8—H7110.2 (9)
O1—C7—N1119.70 (11)C9—C8—H7109.0 (9)
O1—C7—C6121.79 (11)H8—C8—H7107.6 (12)
N1—C7—C6118.50 (10)N2—C9—C8179.61 (18)
C4—C5—C6119.72 (13)C3—C2—C1119.98 (14)
C4—C5—H5120.3 (9)C3—C2—H2120.6 (10)
C6—C5—H5119.9 (9)C1—C2—H2119.4 (10)
C3—C4—C5120.40 (14)C4—C3—C2120.20 (14)
C3—C4—H4122.4 (10)C4—C3—H3121.1 (10)
C5—C4—H4117.2 (10)C2—C3—H3118.7 (9)
C2—C1—C6120.49 (13)C7—N1—C8120.25 (11)
C2—C1—H1121.8 (9)C7—N1—H6121.2 (11)
C6—C1—H1117.7 (9)C8—N1—H6118.2 (11)
N1—C8—C9112.10 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H6···O1i0.819 (17)2.021 (18)2.8313 (14)169

Symmetry codes: (i) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2533).

References

  • Adams, R. & Langley, W. D. (1941a). Org. Synth.1, 298–301.
  • Adams, R. & Langley, W. D. (1941b). Org. Synth.1, 355–356.
  • Bruker (2005). APEX2 amd SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burger, A. (1991). Prog. Drug Res.37, 287–371. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Itoh, F., Yukishige, K., Wajima, M., Ootsu, K. & Akimoto, H. (1995). Chem. Pharm. Bull.43, 230–235. [PubMed]
  • Lunn, W. H., Schoepp, D. D., Calligaro, D. O., Vasileff, R. T., Heinz, L. J., Salhoff, C. R. & O Malley, P. J. (1992). J. Med. Chem.35, 4608–4612. [PubMed]
  • McGuire, J. J., Russell, C. A., Bolanowska, W. E., Freitag, C. M., Jones, C. S. & Kalman, T. I. (1990). Cancer Res.50, 1726–1731. [PubMed]
  • Rostom, S. F., Ashour, H. M. A., El Razik, H. A. A., Abd El Fattah, A. H. & El-Din, N. N. (2009). Bioorg. Med. Chem 17, 2410–2422. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, H., Chawla, A. S., Kapoor, V. K., Paul, D. & Malhotra, R. K. (1980). Prog. Med. Chem.17, 151–183. [PubMed]
  • Smissman, E. E., Terada, A. & El-antably, S. (1976). J. Med. Chem 19, 165–167. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Upadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem.39, 575–592. [PubMed]
  • Westrip, S. P. (2010). publCIF. In preparation.
  • Wu, J., Wang, Q., Guo, J., Hu, Z., Yin, Z., Xu, J. & Wu, X. (2008). Eur. J. Pharm 589, 220–228. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography