PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o591.
Published online 2010 February 13. doi:  10.1107/S1600536810004344
PMCID: PMC2983509

3-(1-Methyl-3-imidazolio)propane­sulfonate: a precursor to a Brønsted acid ionic liquid

Abstract

The title compound, C7H12N2O3S, is a zwitterion precursor to a Brønsted acid ionic liquid with potential as an acid catalyst. The C—N—C—C torsion angle of 100.05 (8)° allows the positively charged imidazolium head group and the negatively charged sulfonate group to inter­act with neighboring zwitterions, forming a C—H(...)O hydrogen-bonding network; the shortest among these inter­actions is 2.9512 (9) Å. The C—H(...)O inter­actions can be described by graph-set notation as two R 2 2(16) and one R 2 2(5) hydrogen-bonded rings.

Related literature

For the use of functionalized ionic liquids (ILs) as Brønsted acid catalysts for organic reactions, see: Cole et al. (2002 [triangle]); Yoshizawa et al. (2001 [triangle]). The local structure of ILs is often conserved on transition from the solid state to the liquid state, see: Henderson et al. (2007 [triangle]); Reichert et al. (2007 [triangle]); Triolo et al. (2006 [triangle]). For a related structure, see: Pringle et al. (2003 [triangle]). For polymorphs of ionic liquids, see: Holbrey et al. (2003 [triangle]) and for the applications of ionic liquids, see: Plechkova & Seddon (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o591-scheme1.jpg

Experimental

Crystal data

  • C7H12N2O3S
  • M r = 204.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o591-efi1.jpg
  • a = 9.8164 (4) Å
  • b = 11.7421 (5) Å
  • c = 7.9769 (3) Å
  • β = 94.878 (2)°
  • V = 916.13 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 296 K
  • 0.29 × 0.28 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: for a sphere (SADABS; Bruker, 2007 [triangle]) T min = 0.910, T max = 0.958
  • 21327 measured reflections
  • 8299 independent reflections
  • 5726 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.120
  • S = 1.03
  • 8299 reflections
  • 166 parameters
  • All H-atom parameters refined
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810004344/kp2241sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004344/kp2241Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Portions of this work were funded by the Office of Naval Research and the US Naval Academy Research Foundation. Any opinions, findings, and conclusion or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the US Navy.

supplementary crystallographic information

Comment

Ionic liquids (ILs) have proven to be highly versatile materials with an ever expanding suite of chemical applications. An application that has recently shown great promise is the use of functionalized ILs as Brønsted acid catalysts for organic reactions (Cole et al., 2002). These IL catalysts are most commonly prepared by the reaction of 1-methylimidazolium-3-alkyl sulfonate zwitterion with an acid that has a pKa low enough to protonate the sulfonate group (Yoshizawa et al., 2001; Cole et al., 2002). The activity of the IL (e.g. the effectiveness of proton transfer) is significantly impacted by the structure and interactions of the zwitterion. It has been shown that the local structure of ILs is often conserved on transition from the solid state to the liquid state (Triolo et al., 2006; Henderson et al., 2007; Reichert et al., 2007). Thus, a structural analysis of the zwitterion, 1-methylimidaolium-3-propanesulfonate (I) might provide valuable insight into the activity of the Brønsted acid IL catalyst.

The asymmetric unit of the title compound is presented in Figure 1. The dominant intermolecular interactions are Coulombic in nature and are through the charged centers of the zwitterion: the imidazolium ring and the sulfonate group (Fig. 2). The negative charged sulfonate group is surrounded by four imidazolium head groups forming six close contacts (Table 1). The interactions of the imidazolium ring hydrogen atoms with the sulfonate group establish two three-dimensional R22(16) rings. The packing along the b axis (Fig. 3) shows the zwitterions arranged in columns along the c axis. The head-to-tail orientation maximizes the polar interaction and minimizes cation-cation and anion-anion repulsions.

Experimental

Compound I was synthesized following the procedure for similar zwitterionic compounds published by (Yoshizawa et al., 2001). 1,3-Propane sultone (25 g, 0.122 mol) was added dropwise to a solution of 1-methylimidazole (10 g, 0.122 mol) in acetone (40 ml) and stirred, then cooled on an ice bath overnight. A white precipitate was recovered from the reaction solution through filtration and washing with acetone. The product was then dried under vacuum giving a white solid (m.p. 482 K). A colourless crystal suitable for single crystal X-ray diffraction was retrieved from the dried product.

Refinement

(type here to add refinement details)

Figures

Fig. 1.
The thermal ellipsiod plot of the asymmetric unit of (I). The displacement ellipsiods are shown at the 50% probability level.
Fig. 2.
Close contacts in compound I.
Fig. 3.
Packing diagram along the b axis.
Fig. 4.
Reaction scheme.

Crystal data

C7H12N2O3SF(000) = 432
Mr = 204.25Dx = 1.481 Mg m3
Monoclinic, P21/cMelting point: 482 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.8164 (4) ÅCell parameters from 4851 reflections
b = 11.7421 (5) Åθ = 3.1–41.1°
c = 7.9769 (3) ŵ = 0.33 mm1
β = 94.878 (2)°T = 296 K
V = 916.13 (6) Å3Plate, colourless
Z = 40.29 × 0.28 × 0.13 mm

Data collection

Bruker SMART CCD area-detector diffractometer8299 independent reflections
Radiation source: fine-focus sealed tube5726 reflections with I > 2σ(I)
graphiteRint = 0.033
phi and ω scansθmax = 47.1°, θmin = 3.1°
Absorption correction: for a sphere (SADABS; Bruker, 2007)h = −20→13
Tmin = 0.910, Tmax = 0.958k = −19→24
21327 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120All H-atom parameters refined
S = 1.03w = 1/[σ2(Fo2) + (0.0574P)2 + 0.0483P] where P = (Fo2 + 2Fc2)/3
8299 reflections(Δ/σ)max = 0.002
166 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.288447 (16)0.459431 (14)0.711035 (19)0.01929 (4)
O10.18103 (7)0.54452 (5)0.71911 (8)0.02993 (12)
O20.42331 (6)0.50523 (8)0.76230 (9)0.03616 (15)
O30.25705 (8)0.35528 (5)0.79823 (8)0.03407 (14)
N30.17238 (6)0.51000 (5)0.16133 (7)0.01989 (9)
N10.28516 (6)0.65793 (5)0.08981 (8)0.02208 (9)
C20.29151 (7)0.54584 (6)0.11322 (8)0.02096 (10)
H2A0.3704 (14)0.5037 (13)0.1080 (19)0.037 (3)*
C40.08588 (8)0.60254 (6)0.16753 (10)0.02580 (12)
H4A−0.0036 (14)0.5991 (11)0.2077 (16)0.034 (3)*
C50.15675 (8)0.69513 (7)0.12222 (11)0.02724 (13)
H5A0.1323 (14)0.7688 (12)0.1137 (17)0.037 (3)*
C60.39573 (9)0.72763 (8)0.03336 (12)0.03149 (15)
H6A0.3932 (15)0.8024 (14)0.0813 (19)0.044 (4)*
H6B0.4809 (19)0.6923 (15)0.063 (2)0.061 (5)*
H6C0.3820 (17)0.7417 (17)−0.081 (2)0.067 (5)*
C70.14604 (8)0.39419 (6)0.21968 (8)0.02303 (11)
H7A0.0552 (13)0.3717 (11)0.1696 (15)0.027 (3)*
H7B0.2156 (12)0.3490 (11)0.1741 (15)0.026 (3)*
C80.15267 (7)0.38976 (6)0.41105 (8)0.02112 (10)
H8A0.0853 (14)0.4389 (12)0.4510 (18)0.033 (3)*
H8B0.1301 (13)0.3105 (12)0.4405 (17)0.036 (3)*
C90.29159 (7)0.42456 (8)0.49418 (9)0.02574 (12)
H9A0.3243 (16)0.4859 (13)0.444 (2)0.043 (4)*
H9B0.3600 (16)0.3658 (13)0.4885 (18)0.043 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01791 (6)0.02075 (7)0.01894 (6)−0.00086 (5)0.00002 (4)0.00099 (4)
O10.0309 (3)0.0258 (2)0.0325 (3)0.0079 (2)−0.0007 (2)−0.00600 (19)
O20.0218 (2)0.0569 (4)0.0287 (3)−0.0109 (3)−0.0044 (2)−0.0016 (3)
O30.0510 (4)0.0231 (2)0.0281 (2)−0.0029 (2)0.0032 (2)0.00664 (19)
N30.0201 (2)0.01929 (19)0.02006 (19)0.00022 (16)0.00055 (16)−0.00017 (15)
N10.0208 (2)0.0222 (2)0.0233 (2)−0.00089 (18)0.00185 (17)0.00077 (17)
C20.0201 (2)0.0225 (2)0.0204 (2)0.00164 (19)0.00209 (18)0.00037 (18)
C40.0200 (3)0.0237 (3)0.0339 (3)0.0023 (2)0.0034 (2)0.0011 (2)
C50.0245 (3)0.0214 (3)0.0361 (3)0.0030 (2)0.0042 (2)0.0014 (2)
C60.0295 (4)0.0310 (3)0.0347 (4)−0.0069 (3)0.0068 (3)0.0048 (3)
C70.0289 (3)0.0190 (2)0.0207 (2)−0.0029 (2)−0.0008 (2)−0.00147 (18)
C80.0208 (2)0.0220 (2)0.0204 (2)−0.00162 (19)0.00092 (18)−0.00033 (18)
C90.0180 (2)0.0392 (4)0.0200 (2)0.0002 (2)0.00188 (18)−0.0015 (2)

Geometric parameters (Å, °)

S1—O31.4529 (6)C5—H5A0.899 (14)
S1—O21.4550 (6)C6—H6A0.959 (16)
S1—O11.4580 (6)C6—H6B0.945 (19)
S1—C91.7805 (7)C6—H6C0.924 (19)
N3—C21.3298 (9)C7—C81.5233 (9)
N3—C41.3825 (9)C7—H7A0.982 (13)
N3—C71.4673 (9)C7—H7B0.961 (12)
N1—C21.3301 (9)C8—C91.5207 (10)
N1—C51.3791 (10)C8—H8A0.952 (14)
N1—C61.4607 (10)C8—H8B0.990 (14)
C2—H2A0.923 (14)C9—H9A0.898 (16)
C4—C51.3562 (11)C9—H9B0.967 (16)
C4—H4A0.961 (14)
O3—S1—O2113.68 (5)H6A—C6—H6B110.8 (14)
O3—S1—O1111.84 (4)N1—C6—H6C110.7 (11)
O2—S1—O1112.24 (5)H6A—C6—H6C102.9 (15)
O3—S1—C9107.06 (4)H6B—C6—H6C112.0 (15)
O2—S1—C9105.52 (4)N3—C7—C8110.85 (5)
O1—S1—C9105.84 (4)N3—C7—H7A107.3 (7)
C2—N3—C4108.62 (6)C8—C7—H7A111.0 (7)
C2—N3—C7124.60 (6)N3—C7—H7B104.0 (7)
C4—N3—C7126.28 (6)C8—C7—H7B112.9 (7)
C2—N1—C5108.65 (6)H7A—C7—H7B110.4 (10)
C2—N1—C6124.78 (7)C9—C8—C7112.84 (6)
C5—N1—C6126.54 (7)C9—C8—H8A108.3 (8)
N3—C2—N1108.77 (6)C7—C8—H8A110.0 (8)
N3—C2—H2A127.3 (9)C9—C8—H8B111.1 (8)
N1—C2—H2A123.6 (9)C7—C8—H8B106.2 (8)
C5—C4—N3106.86 (7)H8A—C8—H8B108.4 (11)
C5—C4—H4A128.8 (8)C8—C9—S1113.36 (5)
N3—C4—H4A124.1 (8)C8—C9—H9A111.2 (10)
C4—C5—N1107.09 (7)S1—C9—H9A106.8 (10)
C4—C5—H5A130.7 (9)C8—C9—H9B112.9 (9)
N1—C5—H5A122.2 (9)S1—C9—H9B106.2 (9)
N1—C6—H6A110.2 (9)H9A—C9—H9B105.9 (13)
N1—C6—H6B110.1 (11)
C2—N3—C7—C8100.05 (8)C4—N3—C7—C8−70.97 (8)
N3—C7—C8—C9−60.48 (8)N3—C7—C8—C9−60.48 (8)
C7—C8—C9—S1163.00 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.923 (14)2.197 (14)2.9512 (9)138.4 (12)
C5—H5A···O1ii0.899 (14)2.381 (15)3.1573 (10)144.6 (12)
C4—H4A···O1iii0.961 (14)2.528 (14)3.3268 (11)140.5 (11)
C4—H4A···O3iii0.961 (14)2.541 (14)3.4364 (11)155.0 (11)
C7—H7B···O3iv0.961 (12)2.613 (12)3.1693 (10)117.2 (9)
C8—H8B···O3iv0.990 (14)2.621 (13)3.2086 (9)118.1 (9)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+1, −z+1; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2241).

References

  • Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C. & Davis, J. H. J. (2002). J. Am. Chem. Soc.124, 5962–5963. [PubMed]
  • Henderson, W. A., Trulove, P. C., De Long, H. C. & Young, V. G. Jr (2007). ECS Trans.3, 83–88.
  • Holbrey, J. D., Reichert, W. M., Niuewenhuyzen, M., Johnston, S., Seddon, K. R. & Rogers, R. D. (2003). Chem. Commun. pp. 1636–1637.
  • Plechkova, N. V. & Seddon, K. R. (2008). Chem. Soc. Rev.37, 123–150. [PubMed]
  • Pringle, J. M., Forsyth, C. M., Forsyth, M. & MacFarlane, D. R. (2003). Acta Cryst. E59, o1759–o1761.
  • Reichert, W. M., Holbrey, J. D., Swatloski, R. P., Gutowski, K. E., Visser, A. E., Nieuwenhuyzen, M., Seddon, K. R. & Rogers, R. D. (2007). Cryst. Growth Des.7, 1106–1114.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Triolo, A., Mandanici, A., Russina, O., Rodriguez-Mora, V., Cutroni, M., Hardacre, C., Nieuwenhuyzen, M., Bleif, H.-J., Keller, L. & Ramos, M. A. (2006). J. Phys. Chem. B, 110, 21357–21364. [PubMed]
  • Yoshizawa, M., Hirao, M., Ito-Akita, K. & Ohno, H. (2001). J. Mater. Chem.11, 1057–1062.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography