PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o504–o505.
Published online 2010 February 3. doi:  10.1107/S1600536810003302
PMCID: PMC2983505

(E)-1-Phenyl-2-({5-[(1E)-(2-phenyl­hydrazin-1-yl­idene)meth­yl]-2-thien­yl}methyl­idene)hydrazine

Abstract

The title mol­ecule, C18H16N4S, adopts a U-shape with the aromatic groups lying syn and orientated in the same direction as the thio­phene S atom. The conformation about each of the C=N bonds is E. Overall, the mol­ecule is curved as seen in the dihedral angle of 30.26 (19)° formed between the terminal benzene rings. In the crystal, supra­molecular chains along the c axis are formed by a combination of N—H(...)N hydrogen bonds and N—H(...)π inter­actions.

Related literature

For specific uses of 2-substituted-thio­phenes as materials, see: Michaleviciute et al. (2007 [triangle], 2009 [triangle]); Kwon et al. (2009 [triangle]). For their specific uses as biological agents, see: Sonar & Crooks (2009 [triangle]); Mellado & Cortes (2009 [triangle]); Satyanarayana et al. (2008 [triangle]); Lourenço et al. (2007 [triangle]). For the preparation of hydrazones of thio­phene­carbaldehydes, see: Kwon, et al. (2009 [triangle]); Wardell et al. (2007 [triangle]); Vaysse & Pastour (1964 [triangle]); Novitskii et al. (1961 [triangle]). For related structures, see: Wardell et al. (2007 [triangle], 2010 [triangle]); Ferreira et al. (2009 [triangle]); Nogueira et al. (2010 [triangle]); de Lima et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o504-scheme1.jpg

Experimental

Crystal data

  • C18H16N4S
  • M r = 320.41
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-66-0o504-efi1.jpg
  • a = 15.6495 (6) Å
  • c = 5.9335 (10) Å
  • V = 1258.5 (2) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 120 K
  • 0.42 × 0.06 × 0.04 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.767, T max = 1.000
  • 11400 measured reflections
  • 3675 independent reflections
  • 3287 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.108
  • S = 1.04
  • 3675 reflections
  • 214 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.22 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1748 Friedel pairs
  • Flack parameter: 0.04 (10)

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003302/hg2637sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003302/hg2637Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

Hydrazone and amide derivatives of thiophene have found many uses, for example in optoelectronic application (Michaleviciute et al., 2007), as optical non-linear materials (Kwon et al., 2009), as hole transporting materials (Michaleviciute et al., 2009), and as biological agents (Sonar & Crooks, 2009; Mellado et al., 2009; Satyanarayana et al., 2008, Lourenço et al., 2007). In continuation of structural studies on thiophene derivatives (Wardell et al., 2007; Nogueira et al., 2010; Ferreira et al., 2009; Wardell et al., 2010; de Lima et al., 2010), we now report the structure of 2,5-thiophenedicarbaldehyde bis(phenylhydrazone), (I).

The molecule of (I) has a U-shaped conformation as the benzene rings are syn, lying to the same side of the molecule as the thiophene-S atom, Fig. 1. The conformation about each of the C5═N1 [1.282 (4) Å] and C12═N3 [1.287 (4) Å] double bonds is E. There are twists in the molecule, primarily about the hydrazine bonds, as seen in the values of the C5/N1/N2/C6 and C12/N3/N4/C13 torsion angles of -171.4 (3) and 165.1 (3) °. respectively. The dihedral angle formed between the two benzene rings is 30.26 (19) °.

Each of the hydrazine-N–H atoms participates in a significant intermolecular interactions to stabilise a supramolecular chain along the c axis, Fig. 2. The N2—H atom forms a conventional, albeit weak, N–H···N interaction, Table 1. The N4–H atom participates in a N–H···π interaction [N4–H···ring centroid(C6–C11)i distance = 2.81 (5) Å, N4···ring centroid(C6–C11)i = 3.415 (4) Å with an angle at H = 126 (3) ° for i: 2- y, 1+ x - y, 2/3+ z]. The resultant chain is further stabilised by C–H···N2 contacts, Table 1. The primary contacts between supramolecular chains are of the type C–H···π where the π-system is derived from the thiophene ring [C17–H···ring centroid(S1,C1–C4)ii = 2.87 Å, C17······ring centroid(S1,C1–C4)ii = 3.798 (6) Å, with angle at H = 165 ° for ii: 1-x+y, 1-x, -2/3+z], Fig. 3.

Experimental

Solutions of phenylhydrazine.hydrochloride (0.22 g, 2 mmol) in EtOH (10 ml) and 2,5-thiophenedicarbaldehyde (0.14 g, 1 mmol) in EtOH (10 ml) were mixed. The reaction mixture was refluxed for 1 h, and rotary evaporated. The solid residue was recrystallised twice from aq. EtOH (v;v 1:2), m.p. 498-500 K. lit value 504 K (Vaysse & Pastour 1964) and 483-484 K (Novitskii et al., 1961).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of the supramolecular chain in (I) mediated by N–H···N hydrogen bonds (blue dashed bonds) and N—H···π interactions (purple dashed lines). Hydrogen atoms not involved in these ...
Fig. 3.
View in projection down the c axis of the unit cell contents for (I). Colour code: S, yellow; N, blue; C, grey; and H, green.

Crystal data

C18H16N4SDx = 1.268 Mg m3
Mr = 320.41Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 8754 reflections
Hall symbol: P 32θ = 2.9–27.5°
a = 15.6495 (6) ŵ = 0.20 mm1
c = 5.9335 (10) ÅT = 120 K
V = 1258.5 (2) Å3Rod, yellow
Z = 30.42 × 0.06 × 0.04 mm
F(000) = 504

Data collection

Nonius KappaCCD area-detector diffractometer3675 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3287 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
[var phi] and ω scansh = −20→20
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −20→20
Tmin = 0.767, Tmax = 1.000l = −7→7
11400 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108w = 1/[σ2(Fo2) + (0.0104P)2 + 1.4032P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3675 reflectionsΔρmax = 0.24 e Å3
214 parametersΔρmin = −0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1748 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (10)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.81560 (6)0.77053 (6)0.68924 (12)0.02814 (16)
N10.68935 (19)0.86586 (19)0.6256 (4)0.0306 (6)
N20.6286 (2)0.9036 (2)0.5913 (5)0.0333 (6)
H2N0.614 (3)0.927 (3)0.711 (7)0.050*
N30.89915 (18)0.63239 (18)0.6731 (4)0.0297 (6)
N40.9375 (2)0.5714 (2)0.6555 (5)0.0361 (6)
H4N0.963 (3)0.563 (3)0.782 (7)0.054*
C10.8031 (2)0.8521 (2)0.8654 (5)0.0300 (7)
C20.8520 (2)0.8645 (3)1.0644 (5)0.0346 (7)
H20.85430.90711.18120.041*
C30.8988 (2)0.8076 (3)1.0785 (5)0.0351 (7)
H30.93600.80811.20550.042*
C40.8851 (2)0.7513 (2)0.8902 (5)0.0268 (6)
C50.7407 (2)0.8917 (2)0.8070 (5)0.0299 (6)
H50.73740.93800.90490.036*
C60.5620 (2)0.8678 (2)0.4142 (5)0.0331 (7)
C70.4833 (3)0.8868 (3)0.4091 (6)0.0389 (8)
H70.47410.92140.52940.047*
C80.4193 (3)0.8546 (3)0.2278 (6)0.0471 (9)
H80.36600.86750.22420.056*
C90.4316 (3)0.8040 (3)0.0517 (6)0.0488 (10)
H90.38710.7823−0.07200.059*
C100.5088 (3)0.7852 (3)0.0562 (6)0.0431 (8)
H100.51710.7502−0.06470.052*
C110.5747 (3)0.8169 (2)0.2359 (5)0.0360 (7)
H110.62790.80400.23740.043*
C120.9187 (2)0.6824 (2)0.8568 (5)0.0299 (6)
H120.95590.67360.97140.036*
C130.9022 (3)0.4977 (2)0.4896 (5)0.0345 (7)
C140.8457 (3)0.4988 (2)0.3078 (5)0.0370 (7)
H140.82570.54680.29900.044*
C150.8196 (3)0.4278 (3)0.1403 (6)0.0474 (9)
H150.78110.42760.01620.057*
C160.8481 (3)0.3579 (3)0.1506 (7)0.0533 (11)
H160.83110.31100.03280.064*
C170.9020 (3)0.3566 (3)0.3340 (7)0.0532 (11)
H170.92020.30720.34370.064*
C180.9296 (3)0.4258 (2)0.5029 (6)0.0418 (8)
H180.96710.42460.62750.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0322 (4)0.0288 (4)0.0255 (3)0.0168 (4)0.0005 (3)−0.0002 (3)
N10.0320 (14)0.0295 (14)0.0300 (13)0.0151 (12)0.0019 (11)0.0043 (10)
N20.0406 (16)0.0391 (16)0.0295 (13)0.0268 (14)−0.0022 (12)−0.0007 (11)
N30.0242 (13)0.0246 (13)0.0388 (14)0.0111 (11)0.0010 (11)0.0006 (11)
N40.0395 (16)0.0385 (17)0.0379 (15)0.0252 (14)−0.0053 (12)−0.0063 (12)
C10.0312 (17)0.0308 (16)0.0274 (14)0.0150 (14)0.0016 (12)−0.0010 (12)
C20.0378 (18)0.0400 (19)0.0304 (16)0.0228 (16)−0.0030 (13)−0.0084 (13)
C30.0350 (18)0.044 (2)0.0298 (16)0.0226 (16)−0.0032 (13)−0.0057 (14)
C40.0230 (14)0.0280 (15)0.0272 (14)0.0112 (12)0.0024 (11)0.0020 (12)
C50.0342 (17)0.0300 (16)0.0283 (15)0.0182 (14)0.0002 (12)−0.0003 (12)
C60.0317 (17)0.0304 (17)0.0319 (16)0.0115 (14)0.0039 (13)0.0095 (12)
C70.0340 (18)0.044 (2)0.0395 (18)0.0198 (16)0.0056 (14)0.0091 (15)
C80.0309 (19)0.052 (2)0.052 (2)0.0162 (17)−0.0004 (16)0.0148 (18)
C90.037 (2)0.050 (2)0.042 (2)0.0083 (18)−0.0089 (16)0.0092 (17)
C100.040 (2)0.038 (2)0.0389 (19)0.0102 (16)0.0000 (15)0.0029 (15)
C110.0335 (17)0.0313 (17)0.0378 (17)0.0122 (15)0.0025 (13)0.0062 (13)
C120.0244 (15)0.0318 (16)0.0313 (15)0.0124 (13)0.0015 (12)0.0031 (12)
C130.0378 (18)0.0277 (16)0.0346 (16)0.0137 (14)0.0059 (14)−0.0012 (13)
C140.0415 (19)0.0304 (18)0.0357 (17)0.0154 (16)−0.0010 (14)−0.0015 (13)
C150.050 (2)0.041 (2)0.0405 (19)0.0145 (19)−0.0006 (17)−0.0031 (16)
C160.069 (3)0.033 (2)0.050 (2)0.020 (2)0.002 (2)−0.0097 (17)
C170.074 (3)0.033 (2)0.056 (2)0.029 (2)0.006 (2)−0.0014 (17)
C180.056 (2)0.0297 (17)0.0424 (19)0.0239 (17)−0.0019 (17)−0.0025 (15)

Geometric parameters (Å, °)

S1—C41.738 (3)C7—H70.9500
S1—C11.736 (3)C8—C91.382 (6)
N1—C51.282 (4)C8—H80.9500
N1—N21.361 (4)C9—C101.379 (5)
N2—C61.386 (4)C9—H90.9500
N2—H2N0.88 (4)C10—C111.391 (5)
N3—C121.287 (4)C10—H100.9500
N3—N41.362 (4)C11—H110.9500
N4—C131.402 (4)C12—H120.9500
N4—H4N0.89 (4)C13—C181.392 (5)
C1—C21.368 (4)C13—C141.400 (5)
C1—C51.436 (4)C14—C151.391 (5)
C2—C31.410 (5)C14—H140.9500
C2—H20.9500C15—C161.374 (6)
C3—C41.371 (4)C15—H150.9500
C3—H30.9500C16—C171.383 (6)
C4—C121.431 (4)C16—H160.9500
C5—H50.9500C17—C181.377 (5)
C6—C111.396 (5)C17—H170.9500
C6—C71.405 (5)C18—H180.9500
C7—C81.382 (5)
C4—S1—C191.41 (15)C9—C8—H8119.6
C5—N1—N2116.9 (3)C10—C9—C8119.8 (3)
N1—N2—C6119.0 (3)C10—C9—H9120.1
N1—N2—H2N116 (3)C8—C9—H9120.1
C6—N2—H2N119 (3)C9—C10—C11120.7 (4)
C12—N3—N4115.9 (3)C9—C10—H10119.6
N3—N4—C13120.0 (3)C11—C10—H10119.6
N3—N4—H4N115 (3)C10—C11—C6119.6 (3)
C13—N4—H4N119 (3)C10—C11—H11120.2
C2—C1—C5126.9 (3)C6—C11—H11120.2
C2—C1—S1111.3 (2)N3—C12—C4120.7 (3)
C5—C1—S1121.6 (2)N3—C12—H12119.6
C1—C2—C3113.1 (3)C4—C12—H12119.6
C1—C2—H2123.5C18—C13—C14120.3 (3)
C3—C2—H2123.5C18—C13—N4118.1 (3)
C4—C3—C2113.2 (3)C14—C13—N4121.5 (3)
C4—C3—H3123.4C15—C14—C13118.4 (3)
C2—C3—H3123.4C15—C14—H14120.8
C3—C4—C12126.7 (3)C13—C14—H14120.8
C3—C4—S1111.0 (2)C16—C15—C14121.4 (4)
C12—C4—S1122.2 (2)C16—C15—H15119.3
N1—C5—C1121.4 (3)C14—C15—H15119.3
N1—C5—H5119.3C15—C16—C17119.3 (4)
C1—C5—H5119.3C15—C16—H16120.3
N2—C6—C11120.8 (3)C17—C16—H16120.3
N2—C6—C7119.5 (3)C18—C17—C16121.0 (4)
C11—C6—C7119.6 (3)C18—C17—H17119.5
C8—C7—C6119.5 (4)C16—C17—H17119.5
C8—C7—H7120.2C17—C18—C13119.5 (4)
C6—C7—H7120.2C17—C18—H18120.3
C7—C8—C9120.9 (4)C13—C18—H18120.3
C7—C8—H8119.6
C5—N1—N2—C6−171.4 (3)C7—C8—C9—C100.0 (5)
C12—N3—N4—C13165.1 (3)C8—C9—C10—C11−0.2 (5)
C4—S1—C1—C21.3 (3)C9—C10—C11—C60.4 (5)
C4—S1—C1—C5−173.5 (3)N2—C6—C11—C10−177.5 (3)
C5—C1—C2—C3173.6 (3)C7—C6—C11—C10−0.3 (5)
S1—C1—C2—C3−0.9 (4)N4—N3—C12—C4177.9 (3)
C1—C2—C3—C4−0.3 (4)C3—C4—C12—N3178.5 (3)
C2—C3—C4—C12−176.8 (3)S1—C4—C12—N30.7 (4)
C2—C3—C4—S11.3 (4)N3—N4—C13—C18−168.3 (3)
C1—S1—C4—C3−1.5 (3)N3—N4—C13—C1415.3 (5)
C1—S1—C4—C12176.7 (3)C18—C13—C14—C15−1.2 (5)
N2—N1—C5—C1176.6 (3)N4—C13—C14—C15175.2 (3)
C2—C1—C5—N1−171.7 (3)C13—C14—C15—C16−0.1 (6)
S1—C1—C5—N12.2 (4)C14—C15—C16—C171.6 (6)
N1—N2—C6—C11−18.7 (4)C15—C16—C17—C18−1.8 (7)
N1—N2—C6—C7164.1 (3)C16—C17—C18—C130.5 (6)
N2—C6—C7—C8177.3 (3)C14—C13—C18—C171.0 (5)
C11—C6—C7—C80.1 (5)N4—C13—C18—C17−175.5 (3)
C6—C7—C8—C90.0 (5)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···N4i0.88 (4)2.58 (5)3.398 (4)155 (4)
C12—H12···N2ii0.952.573.463 (5)157
N4—H4N···Cgii0.89 (4)2.81 (5)3.415 (4)126 (3)

Symmetry codes: (i) −x+y+1, −x+2, z+1/3; (ii) −y+2, xy+1, z+2/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2637).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203. [PMC free article] [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kwon, O.-P., Jazbinsek, M., Seo, J.-I., Kim, P.-J., Yun, H., Lee, Y. S. & Gunter, P. (2009). J. Phys. Chem. C, 113, 15405–15411.
  • Lima, G. M. de, Harrison, W. T. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o457–o458. [PMC free article] [PubMed]
  • Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett 17, 6895–6898. [PubMed]
  • Mellado, O. G. & Cortes, E. C. (2009). Mex. Pat. Appl. CODEN: MXXXA3 MX 2007012608 A 20090413.
  • Michaleviciute, A., Buika, G., Grazulevicius, J. V., Tran-Van, F., Chevrot, C. & Jankauskas, V. (2007). Mol. Cryst. Liq. Cryst 468, 459–470.
  • Michaleviciute, A., Lygaitis, R., Grazulevicius, J. V., Buika, G., Jankauskas, V., Undzenas, A. & Fataraite, E. (2009). Synth. Met.159, 223–227.
  • Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177. [PMC free article] [PubMed]
  • Novitskii, K. Yu., Volkov, V. P., Shaiderova, L. P. & Yurev, Yu. K. (1961). Zh. Obshch. Khim.31, 3277–3280.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Satyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V. (2008). ARKIVOC, pp. 221–233.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonar, V. N. & Crooks, P. A. (2009). J. Enz. Inhib. Med. Chem.24, 117–124 [PubMed]
  • Vaysse, M. & Pastour, P. (1964). Compt. Rend.259, 2657–2659.
  • Wardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271–o272. [PMC free article] [PubMed]
  • Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848–o1850.
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography