PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o698–o699.
Published online 2010 February 27. doi:  10.1107/S1600536810006586
PMCID: PMC2983501

7-Chloro-4-[(E)-2-(2-methoxy­benzyl­idene)hydrazin-1-yl]quinoline monohydrate

Abstract

In the title hydrate, C17H14ClN3O·H2O, the dihedral angle between the quinoline fused-ring system and the benzene ring is 13.4 (2)° and the conformation about the C=N bond is E. In the crystal, Nh—H(...)Ow and Ow—H(...)Nq (h = hydro­zone, w = water and q = quinoline) hydrogen bonds generate a two-dimenstional network in the ac plane. A weak C—H(...)O inter­action helps to consolidate the packing.

Related literature

For background to the pharmacological activity of quinoline derivatives, see: Warshakoon et al. (2006 [triangle]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007 [triangle]); de Souza et al. (2005 [triangle]). For related structures, see: Kaiser et al. (2009 [triangle]); de Souza et al. (2009 [triangle], 2010 [triangle]). For the structure of the isomeric 2-meth­oxy structure, see: de Lima Ferreira et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o698-scheme1.jpg

Experimental

Crystal data

  • C17H14ClN3O·H2O
  • M r = 329.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o698-efi1.jpg
  • a = 3.9202 (2) Å
  • b = 24.5084 (17) Å
  • c = 16.1212 (11) Å
  • β = 91.639 (4)°
  • V = 1548.26 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 120 K
  • 0.62 × 0.03 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.735, T max = 0.995
  • 11507 measured reflections
  • 2716 independent reflections
  • 1769 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.093
  • wR(F 2) = 0.260
  • S = 1.04
  • 2716 reflections
  • 215 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006586/hb5340sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006586/hb5340Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

Quinoline derivatives are known to display pharmacological potential (Warshakoon et al., 2006) and are being investigated for their anti-malarial activity (Andrade et al. 2007; de Souza et al., 2005). Structural studies on quinoline derivatives augment the biological investigations (Kaiser et al., 2009; de Souza et al., 2009; de Souza et al., 2010; de Lima Ferreira et al., 2010) and as a part of these studies, the crystal structure of the title hydrate, (I), was investigated.

The most significant twist in the quinoline molecule of (I), Fig. 1, occurs around the C10–C11 bond as seen in the N3–C10–C11–C16 torsion angle of 6.9 (9) °. This accounts for the dihedral angle of 13.4 (2) ° formed between the quinoline fused-ring system and the benzene ring. The conformation about the C10═N3 bond [1.282 (8) Å] is E. The crystal packing is stabilised by a variety of hydrogen bonding interactions, Table 1. The water molecule accepts a hydrogen bond from the hydrazone-N2 atom and bridges two symmetry related molecules by forming donor interactions with quinoline-N1 atoms; the water-O atom also participates in a C–H···O contact, Table 1. The result of the hydrogen bonding is the formation of a 2-D supramolecular array in the ac plane, Fig. 2, and these stack along the b axis, Fig. 3.

Experimental

A solution of 7-chloro-4-quinolinylhydrazine(0.2 g, 1.03 mmol) and 2-methoxybenzaldehyde (1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue, was washed with cold Et2O (3 x 10 ml) and recrystallised from EtOH; m.pt. 459-461 K, yield 82%. The sample for the X-ray study was slowly grown from moist EtOH and was found to be the monohydrate. MS/ESI: [M—H]: 310.8. IR νmax (cm-1; KBr disc): 3190 (N—H), 1578 (C=N).

Refinement

The N- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,N). The water-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structures of the asymmetric unit in (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
View of the 2-D supramolecular array in the ac plane of (I) showing the O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. Colour code: Cl, cyan; O, red; ...
Fig. 3.
A view of the stacking of layers in (I). The O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green. ...

Crystal data

C17H14ClN3O·H2OF(000) = 688
Mr = 329.78Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9260 reflections
a = 3.9202 (2) Åθ = 2.9–27.5°
b = 24.5084 (17) ŵ = 0.26 mm1
c = 16.1212 (11) ÅT = 120 K
β = 91.639 (4)°Needle, colourless
V = 1548.26 (17) Å30.62 × 0.03 × 0.02 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2716 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1769 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.096
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
[var phi] and ω scansh = −4→4
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −29→29
Tmin = 0.735, Tmax = 0.995l = −19→19
11507 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.260H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.1P)2 + 10.4045P] where P = (Fo2 + 2Fc2)/3
2716 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.0208 (4)0.57108 (6)0.05313 (10)0.0256 (5)
O11.3298 (11)0.93299 (18)0.2940 (3)0.0232 (10)
N10.1966 (13)0.7497 (2)−0.0985 (3)0.0201 (12)
N20.6619 (13)0.8261 (2)0.1080 (3)0.0214 (12)
H2N0.69680.80800.15470.026*
N30.7680 (12)0.8795 (2)0.1015 (3)0.0195 (12)
C10.2920 (16)0.8018 (3)−0.0989 (4)0.0232 (15)
H10.25040.8220−0.14840.028*
C20.4479 (15)0.8288 (2)−0.0322 (4)0.0183 (13)
H20.51570.8658−0.03770.022*
C30.5046 (15)0.8016 (2)0.0426 (4)0.0203 (14)
C40.3926 (15)0.7459 (2)0.0470 (4)0.0176 (13)
C50.4234 (15)0.7141 (3)0.1204 (4)0.0223 (14)
H50.52400.72960.16920.027*
C60.3094 (16)0.6611 (2)0.1217 (4)0.0206 (14)
H60.32930.64020.17120.025*
C70.1640 (15)0.6384 (2)0.0496 (4)0.0176 (13)
C80.1307 (16)0.6672 (3)−0.0225 (4)0.0213 (14)
H80.03290.6504−0.07070.026*
C90.2419 (15)0.7222 (2)−0.0257 (4)0.0180 (13)
C100.9303 (15)0.8980 (3)0.1657 (4)0.0211 (14)
H100.97740.87450.21150.025*
C111.0442 (14)0.9551 (2)0.1693 (4)0.0164 (13)
C121.2380 (14)0.9726 (2)0.2387 (4)0.0181 (14)
C131.3295 (16)1.0271 (3)0.2466 (4)0.0237 (15)
H131.45961.03910.29380.028*
C141.2299 (16)1.0641 (3)0.1851 (4)0.0222 (14)
H141.29081.10140.19090.027*
C151.0422 (16)1.0471 (3)0.1152 (4)0.0249 (15)
H150.97781.07250.07310.030*
C160.9495 (15)0.9922 (2)0.1078 (4)0.0212 (14)
H160.82110.98020.06040.025*
C171.5235 (16)0.9495 (3)0.3666 (4)0.0242 (15)
H17A1.74390.96420.35010.036*
H17B1.56130.91790.40300.036*
H17C1.39760.97770.39620.036*
O1W0.7223 (14)0.7893 (2)0.2807 (3)0.0304 (12)
H1W0.53 (2)0.785 (3)0.300 (5)0.046*
H2W0.89 (2)0.780 (3)0.309 (5)0.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0319 (9)0.0186 (8)0.0263 (9)−0.0044 (7)−0.0002 (7)0.0044 (7)
O10.028 (2)0.023 (2)0.018 (2)0.0005 (19)−0.0047 (18)−0.001 (2)
N10.027 (3)0.019 (3)0.015 (3)−0.002 (2)−0.003 (2)0.002 (2)
N20.027 (3)0.020 (3)0.017 (3)−0.002 (2)−0.003 (2)0.002 (2)
N30.022 (3)0.015 (3)0.022 (3)−0.002 (2)0.004 (2)−0.002 (2)
C10.026 (3)0.026 (4)0.017 (4)0.000 (3)−0.005 (3)0.008 (3)
C20.023 (3)0.015 (3)0.017 (3)−0.001 (2)0.004 (3)−0.004 (3)
C30.018 (3)0.020 (3)0.022 (4)0.002 (3)−0.003 (3)−0.004 (3)
C40.016 (3)0.020 (3)0.017 (3)0.001 (2)0.005 (2)0.001 (3)
C50.023 (3)0.025 (3)0.019 (4)0.002 (3)−0.002 (3)0.000 (3)
C60.029 (3)0.015 (3)0.018 (4)0.002 (3)0.001 (3)−0.001 (3)
C70.019 (3)0.017 (3)0.018 (3)0.002 (2)0.008 (2)−0.002 (3)
C80.023 (3)0.024 (3)0.017 (4)−0.004 (3)−0.004 (3)−0.001 (3)
C90.023 (3)0.016 (3)0.015 (3)0.000 (2)−0.002 (3)−0.002 (3)
C100.019 (3)0.021 (3)0.023 (4)0.001 (3)0.002 (3)0.005 (3)
C110.014 (3)0.016 (3)0.018 (3)−0.004 (2)0.001 (2)−0.003 (3)
C120.014 (3)0.019 (3)0.022 (4)0.001 (2)0.006 (2)−0.004 (3)
C130.027 (3)0.026 (3)0.018 (4)−0.001 (3)0.000 (3)0.001 (3)
C140.026 (3)0.015 (3)0.026 (4)−0.007 (3)0.011 (3)−0.003 (3)
C150.027 (3)0.019 (3)0.029 (4)0.006 (3)0.003 (3)0.003 (3)
C160.024 (3)0.018 (3)0.021 (4)0.001 (3)0.004 (3)−0.004 (3)
C170.022 (3)0.030 (4)0.021 (4)−0.002 (3)−0.002 (3)−0.005 (3)
O1W0.028 (3)0.039 (3)0.024 (3)0.000 (2)−0.005 (2)0.004 (2)

Geometric parameters (Å, °)

Cl1—C71.744 (6)C7—C81.362 (9)
O1—C121.360 (7)C8—C91.419 (9)
O1—C171.434 (7)C8—H80.9500
N1—C11.330 (8)C10—C111.471 (8)
N1—C91.361 (8)C10—H100.9500
N2—C31.348 (8)C11—C161.388 (9)
N2—N31.379 (7)C11—C121.401 (8)
N2—H2N0.8800C12—C131.388 (9)
N3—C101.282 (8)C13—C141.391 (9)
C1—C21.389 (9)C13—H130.9500
C1—H10.9500C14—C151.391 (9)
C2—C31.391 (9)C14—H140.9500
C2—H20.9500C15—C161.399 (9)
C3—C41.436 (8)C15—H150.9500
C4—C91.420 (8)C16—H160.9500
C4—C51.420 (9)C17—H17A0.9800
C5—C61.372 (9)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—C71.396 (9)O1W—H1W0.81 (9)
C6—H60.9500O1W—H2W0.82 (9)
C12—O1—C17117.2 (5)N1—C9—C4123.4 (5)
C1—N1—C9116.6 (5)C8—C9—C4118.6 (6)
C3—N2—N3119.7 (5)N3—C10—C11120.7 (6)
C3—N2—H2N120.2N3—C10—H10119.6
N3—N2—H2N120.2C11—C10—H10119.6
C10—N3—N2114.6 (5)C16—C11—C12119.9 (6)
N1—C1—C2124.9 (6)C16—C11—C10121.4 (5)
N1—C1—H1117.6C12—C11—C10118.7 (5)
C2—C1—H1117.6O1—C12—C13124.3 (6)
C1—C2—C3119.9 (6)O1—C12—C11115.7 (5)
C1—C2—H2120.1C13—C12—C11120.0 (6)
C3—C2—H2120.1C12—C13—C14119.6 (6)
N2—C3—C2121.6 (6)C12—C13—H13120.2
N2—C3—C4121.2 (6)C14—C13—H13120.2
C2—C3—C4117.2 (5)C15—C14—C13120.9 (6)
C9—C4—C5119.1 (5)C15—C14—H14119.5
C9—C4—C3117.9 (5)C13—C14—H14119.5
C5—C4—C3122.9 (6)C14—C15—C16119.1 (6)
C6—C5—C4120.8 (6)C14—C15—H15120.4
C6—C5—H5119.6C16—C15—H15120.4
C4—C5—H5119.6C11—C16—C15120.3 (6)
C5—C6—C7119.3 (6)C11—C16—H16119.8
C5—C6—H6120.3C15—C16—H16119.8
C7—C6—H6120.3O1—C17—H17A109.5
C8—C7—C6122.0 (6)O1—C17—H17B109.5
C8—C7—Cl1119.7 (5)H17A—C17—H17B109.5
C6—C7—Cl1118.3 (5)O1—C17—H17C109.5
C7—C8—C9120.1 (6)H17A—C17—H17C109.5
C7—C8—H8119.9H17B—C17—H17C109.5
C9—C8—H8119.9H1W—O1W—H2W118 (9)
N1—C9—C8118.0 (5)
C3—N2—N3—C10−176.6 (6)C7—C8—C9—C41.1 (9)
C9—N1—C1—C23.4 (9)C5—C4—C9—N1178.9 (6)
N1—C1—C2—C3−2.1 (10)C3—C4—C9—N1−0.4 (9)
N3—N2—C3—C20.5 (9)C5—C4—C9—C8−0.8 (9)
N3—N2—C3—C4179.6 (5)C3—C4—C9—C8179.9 (6)
C1—C2—C3—N2178.5 (6)N2—N3—C10—C11−177.0 (5)
C1—C2—C3—C4−0.6 (9)N3—C10—C11—C166.9 (9)
N2—C3—C4—C9−177.4 (6)N3—C10—C11—C12−176.3 (6)
C2—C3—C4—C91.7 (8)C17—O1—C12—C132.3 (9)
N2—C3—C4—C53.3 (9)C17—O1—C12—C11−178.9 (5)
C2—C3—C4—C5−177.6 (6)C16—C11—C12—O1−177.5 (5)
C9—C4—C5—C60.0 (9)C10—C11—C12—O15.6 (8)
C3—C4—C5—C6179.3 (6)C16—C11—C12—C131.3 (9)
C4—C5—C6—C70.5 (9)C10—C11—C12—C13−175.6 (6)
C5—C6—C7—C8−0.1 (9)O1—C12—C13—C14178.2 (6)
C5—C6—C7—Cl1−179.9 (5)C11—C12—C13—C14−0.5 (9)
C6—C7—C8—C9−0.7 (10)C12—C13—C14—C15−0.6 (10)
Cl1—C7—C8—C9179.1 (5)C13—C14—C15—C160.9 (10)
C1—N1—C9—C8177.7 (6)C12—C11—C16—C15−1.0 (9)
C1—N1—C9—C4−2.0 (9)C10—C11—C16—C15175.8 (6)
C7—C8—C9—N1−178.6 (6)C14—C15—C16—C11−0.1 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O1W0.882.082.928 (7)161
O1W—H1W···N1i0.81 (9)2.30 (9)3.030 (8)150 (8)
O1W—H2W···N1ii0.82 (9)2.03 (9)2.820 (7)163 (8)
C5—H5···O1W0.952.433.358 (8)166

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5340).

References

  • Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm 558, 194–198. [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.
  • Lima Ferreira, M. de, de Souza, M. V. N., Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o696–o697. [PMC free article] [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Souza, M. V. N. de (2005). Mini-Rev. Med. Chem 5, 1009–1017. [PubMed]
  • Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152–o153. [PMC free article] [PubMed]
  • Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120–o3121. [PMC free article] [PubMed]
  • Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett 16, 5207–5211. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography