PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m246.
Published online 2010 February 3. doi:  10.1107/S1600536810003466
PMCID: PMC2983499

Poly[tetra­kis[μ2-1,3-bis­(4-pyrid­yl)propane-κ2 N:N′]dichloridobis(phenyl­acetato)dimanganese(II)]

Abstract

In the title compound, [Mn2(C8H7O2)2Cl2(C13H14N2)4]n, the two MnII atoms lie on inversion centers and are connected by the N-heterocyclic ligands into a wave-like lamellar framework structure. One MnII atom is covalently bonded to two Cl atoms and the other to two benzyl­acetate anions; both Mn atoms show distorted octahedral coordinations.

Related literature

For general background to the use of poly-pyridyl ligand linkers such as 4,4′-bipyridine in the rational design and assembly of coordination polymers, see: Biradha et al. (2006 [triangle]). For related structures, see: Carlucci et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m246-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C8H7O2)2Cl2(C13H14N2)4]
  • M r = 1244.10
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m246-efi1.jpg
  • a = 9.5594 (5) Å
  • b = 13.0091 (6) Å
  • c = 13.8484 (6) Å
  • α = 69.202 (4)°
  • β = 86.318 (4)°
  • γ = 69.910 (5)°
  • V = 1508.74 (13) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.56 mm−1
  • T = 293 K
  • 0.48 × 0.46 × 0.23 mm

Data collection

  • Oxford Diffraction Xcalibur (Atlas Gemini ultra) diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.77, T max = 0.88
  • 10180 measured reflections
  • 5303 independent reflections
  • 4041 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.069
  • S = 0.96
  • 5303 reflections
  • 383 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: OLEX2 (Dolomanov et al., 2009 [triangle]); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003466/ng2721sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003466/ng2721Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105), and the Education Department of Zhejiang Province. Thanks are also extended the to K. C. Wong Magna Fund in Ningbo University.

supplementary crystallographic information

Comment

Over the past few decades, Some poly-pyridyl ligand linkers such as 4,4'-bipyridine have been extensively studied for rational design and assembly of coordination polymers [Biradha et al. (2006)]. However, few studies have been done to 1,3-bis(4-pyridyl)propane (bpp), which has analogous structures to 4,4'-bipyridine ligands. In this paper, we report the synthesis and crystal structure of the title compound.

The molecular unit consists of two Mn2+ ions (namely Mn1 and Mn2), four bpp molecules, two phenylacetate anions and two Cl- anions. The Mn1 and Mn2 atoms both sit at symmetry inversion centers. Each Mn1 atom is coordinated by four N atoms from different bpp ligands and two two oxygen atoms of monodentate phenylacetate ligands to form a MnN4O2 chromophore with oxygen atoms occupied the axial positions. The coordination environment of Mn2 is completed by four N atoms and two Cl- anions, forming a MnN4Cl2 chromophore, whose axial positions defined by Cl- anions. The coordination environment of each Mn(II) could be best describes as distorted octahedral geometry, and the slight distortion is reflected on the cisoid angles [84.37 (5)-95.63 (5)°].

It's noting that the flexible bpp ligands presents two different conformations [Carlucci et al. (2002)], with rational N···N distance 9.223Å for TG bpp [torsion angles of 66.1 (4) and 174.1 (4)°] and 8.091Å for GG' bpp [torsion angles of 75.9 (5) and 163.7 (4)°], which lead to different distances of the adjacent Mn1 and Mn2 (13.065 and 10.930 Å). The Mn1 and Mn2 atoms are connected by bpp ligands into a wave-like lamellar framework structure in rectangle (4, 4) topology (Fig.2), which is further stacked into a 3D supramolecular architecture linked by the C—H···O and C—H···Cl hydrogen bonding interactions.

Experimental

A mixture of MnCl2.4H2O (0.1977 g, 1.00 mmol) with phenylacetic acid (0.2731 g, 2.00 mmol), 1,3-bis(4-pyridyl)propane (0.1976 g, 1.00 mmol) and NaOH (0.0805 g, 2.00 mmol), in the molar ratio 1:2:1:2, and water (10 ml) was placed in a Parr Teflonlined stainless steel vessel (25 ml); the vessel was sealed and heated to 433 K for 3 d, and the reaction mixture was cooled to room temperature, yellow crystals were obtained from the filtrate after a few days.

Refinement

H atoms bonded to C atoms were palced in geometrically calculated positionand were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 30% probability level [Symmetry codes: (#1) -x + 2, -y + 2, -z +1; (#2) -x + 1, -y + 1, -z; (#3) -x + 2, -y + 1, -z; (#4) x - 1, y, z; (#5) x + 1, y, z].
Fig. 2.
The two-dimensional layer of the compound. Hydrogen atoms are omitted for clarity.

Crystal data

[Mn2(C8H7O2)2Cl2(C13H14N2)4]Z = 1
Mr = 1244.10F(000) = 650
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5594 (5) ÅCell parameters from 5358 reflections
b = 13.0091 (6) Åθ = 3.3–29.3°
c = 13.8484 (6) ŵ = 0.56 mm1
α = 69.202 (4)°T = 293 K
β = 86.318 (4)°Block, yellow
γ = 69.910 (5)°0.48 × 0.46 × 0.23 mm
V = 1508.74 (13) Å3

Data collection

Oxford Diffraction Xcalibur (Atlas Gemini ultra) diffractometer5303 independent reflections
Radiation source: fine-focus sealed tube4041 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 10.3592 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = −11→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)k = −13→15
Tmin = 0.77, Tmax = 0.88l = −16→16
10180 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.069w = 1/[σ2(Fo2) + (0.0355P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
5303 reflectionsΔρmax = 0.23 e Å3
383 parametersΔρmin = −0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn11.00001.00000.50000.02534 (11)
Mn20.50000.50000.00000.02969 (12)
Cl0.34313 (5)0.44105 (5)0.14744 (4)0.04018 (14)
O10.75819 (12)1.08965 (11)0.46913 (9)0.0362 (3)
O20.64269 (15)1.08883 (14)0.33545 (10)0.0522 (4)
N11.00849 (15)0.85804 (12)0.42979 (11)0.0288 (3)
N20.69038 (16)0.45962 (13)0.12058 (11)0.0312 (4)
N31.05314 (16)1.09985 (13)0.33750 (11)0.0299 (3)
N41.40150 (16)0.69381 (14)−0.00685 (12)0.0352 (4)
C11.1512 (2)0.71106 (18)0.36191 (16)0.0417 (5)
H11.24490.66780.34790.050*
C21.1387 (2)0.79193 (18)0.40728 (15)0.0396 (5)
H21.22560.80120.42320.047*
C30.8877 (2)0.84106 (17)0.40593 (15)0.0383 (5)
H30.79520.88510.42070.046*
C40.8926 (2)0.76112 (18)0.36018 (16)0.0412 (5)
H40.80430.75310.34500.049*
C51.0260 (2)0.69363 (16)0.33697 (14)0.0313 (4)
C61.0345 (2)0.60283 (17)0.29095 (15)0.0380 (5)
H6B1.12640.58640.25600.046*
H6A0.95170.63350.23980.046*
C71.0295 (2)0.49008 (16)0.37315 (14)0.0334 (4)
H7A0.93400.50640.40390.040*
H7B1.10660.46430.42730.040*
C81.0510 (2)0.38992 (16)0.33360 (14)0.0324 (4)
H8B1.14380.37620.29930.039*
H8A1.05970.31910.39230.039*
C90.92566 (19)0.41373 (15)0.25951 (13)0.0282 (4)
C100.9306 (2)0.46458 (17)0.15395 (14)0.0349 (5)
H101.01320.48470.12700.042*
C110.8136 (2)0.48548 (17)0.08854 (14)0.0357 (5)
H110.82040.51970.01780.043*
C120.6865 (2)0.40978 (17)0.22292 (15)0.0379 (5)
H120.60290.39010.24800.045*
C130.7992 (2)0.38592 (17)0.29348 (14)0.0368 (5)
H130.79040.35110.36390.044*
C141.0025 (2)1.17152 (17)0.15429 (14)0.0367 (5)
H140.93541.19240.09910.044*
C150.9625 (2)1.13025 (16)0.25450 (14)0.0339 (4)
H150.86861.12320.26490.041*
C161.1850 (2)1.11445 (17)0.31863 (15)0.0354 (5)
H161.24831.09680.37490.043*
C171.2331 (2)1.15408 (17)0.22097 (15)0.0391 (5)
H171.32661.16200.21260.047*
C181.1416 (2)1.18203 (16)0.13546 (15)0.0352 (5)
C191.1965 (3)1.21582 (18)0.02808 (16)0.0487 (6)
H19B1.26221.25950.02420.058*
H19A1.11221.2661−0.02170.058*
C201.2812 (2)1.10655 (19)0.00013 (17)0.0507 (6)
H20B1.33671.1287−0.06020.061*
H20A1.35231.04960.05700.061*
C211.1775 (3)1.0502 (2)−0.02233 (18)0.0550 (6)
H21A1.10161.05010.02770.066*
H21B1.12751.0973−0.09050.066*
C221.2571 (2)0.92665 (19)−0.01826 (16)0.0416 (5)
C231.3214 (2)0.89998 (18)−0.10331 (15)0.0417 (5)
H231.31700.9596−0.16620.050*
C241.3917 (2)0.78443 (18)−0.09375 (15)0.0365 (5)
H241.43480.7688−0.15140.044*
C251.3406 (2)0.71987 (19)0.07506 (15)0.0462 (5)
H251.34630.65860.13700.055*
C261.2703 (2)0.8323 (2)0.07211 (17)0.0516 (6)
H261.23100.84540.13160.062*
C270.64387 (19)1.11445 (16)0.41277 (14)0.0309 (4)
C280.4906 (2)1.1779 (2)0.44208 (17)0.0562 (6)
H28B0.43951.24290.38040.067*
H28A0.43511.12450.46040.067*
C290.47920 (19)1.22539 (19)0.52763 (16)0.0391 (5)
C300.5024 (2)1.1515 (2)0.62991 (18)0.0489 (6)
H300.52731.07130.64620.059*
C310.4885 (2)1.1967 (3)0.70858 (19)0.0643 (7)
H310.50781.14620.77720.077*
C320.4469 (3)1.3141 (3)0.6860 (3)0.0713 (9)
H320.43561.34400.73900.086*
C330.4220 (3)1.3873 (3)0.5859 (3)0.0703 (8)
H330.39291.46770.57040.084*
C340.4393 (2)1.3440 (2)0.50720 (19)0.0544 (6)
H340.42391.39550.43890.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0254 (2)0.0287 (2)0.0267 (2)−0.00973 (17)0.00331 (16)−0.01524 (19)
Mn20.0266 (2)0.0352 (2)0.0289 (2)−0.01084 (18)0.00248 (17)−0.0132 (2)
Cl0.0320 (3)0.0543 (3)0.0350 (3)−0.0170 (2)0.0077 (2)−0.0155 (3)
O10.0243 (6)0.0468 (9)0.0401 (8)−0.0071 (6)−0.0008 (6)−0.0228 (7)
O20.0481 (8)0.0678 (11)0.0427 (9)−0.0074 (8)−0.0051 (7)−0.0328 (9)
N10.0308 (8)0.0281 (9)0.0316 (9)−0.0120 (7)0.0024 (7)−0.0137 (8)
N20.0319 (8)0.0328 (9)0.0306 (9)−0.0118 (7)0.0016 (7)−0.0126 (8)
N30.0316 (8)0.0299 (9)0.0323 (9)−0.0111 (7)0.0041 (7)−0.0157 (8)
N40.0369 (9)0.0394 (10)0.0313 (9)−0.0116 (8)0.0017 (7)−0.0162 (9)
C10.0298 (10)0.0485 (13)0.0595 (14)−0.0130 (10)0.0121 (10)−0.0356 (12)
C20.0279 (10)0.0485 (13)0.0573 (13)−0.0175 (10)0.0071 (9)−0.0326 (12)
C30.0276 (10)0.0374 (12)0.0560 (13)−0.0078 (9)0.0054 (9)−0.0272 (11)
C40.0290 (10)0.0444 (13)0.0621 (14)−0.0134 (9)−0.0010 (9)−0.0313 (12)
C50.0374 (10)0.0305 (11)0.0317 (10)−0.0139 (9)0.0035 (8)−0.0156 (9)
C60.0477 (12)0.0397 (12)0.0384 (12)−0.0200 (10)0.0090 (9)−0.0237 (11)
C70.0343 (10)0.0407 (12)0.0330 (11)−0.0143 (9)0.0011 (8)−0.0205 (10)
C80.0366 (10)0.0281 (11)0.0325 (10)−0.0093 (9)−0.0032 (8)−0.0119 (9)
C90.0333 (10)0.0217 (10)0.0327 (11)−0.0074 (8)−0.0003 (8)−0.0146 (9)
C100.0369 (11)0.0421 (12)0.0340 (11)−0.0220 (10)0.0049 (9)−0.0153 (10)
C110.0419 (11)0.0412 (12)0.0268 (10)−0.0196 (10)0.0027 (9)−0.0101 (10)
C120.0340 (11)0.0458 (13)0.0376 (12)−0.0199 (10)0.0063 (9)−0.0138 (11)
C130.0422 (11)0.0447 (13)0.0263 (10)−0.0192 (10)0.0035 (9)−0.0118 (10)
C140.0438 (12)0.0343 (11)0.0313 (11)−0.0092 (9)0.0007 (9)−0.0144 (10)
C150.0292 (10)0.0374 (12)0.0375 (12)−0.0110 (9)0.0036 (9)−0.0168 (10)
C160.0346 (10)0.0369 (12)0.0409 (12)−0.0142 (9)0.0028 (9)−0.0191 (10)
C170.0376 (11)0.0361 (12)0.0499 (13)−0.0185 (10)0.0108 (10)−0.0182 (11)
C180.0480 (12)0.0213 (10)0.0385 (11)−0.0126 (9)0.0128 (10)−0.0141 (10)
C190.0703 (15)0.0333 (12)0.0449 (13)−0.0235 (11)0.0222 (11)−0.0144 (11)
C200.0639 (14)0.0472 (14)0.0469 (13)−0.0228 (12)0.0251 (11)−0.0234 (12)
C210.0581 (14)0.0504 (15)0.0564 (15)−0.0063 (12)0.0010 (11)−0.0305 (13)
C220.0422 (11)0.0436 (13)0.0434 (13)−0.0093 (10)0.0005 (10)−0.0253 (12)
C230.0496 (12)0.0405 (13)0.0356 (11)−0.0136 (10)0.0021 (9)−0.0160 (11)
C240.0412 (11)0.0404 (12)0.0309 (11)−0.0135 (10)0.0042 (9)−0.0170 (11)
C250.0618 (14)0.0475 (14)0.0290 (11)−0.0181 (11)0.0048 (10)−0.0142 (11)
C260.0678 (15)0.0540 (15)0.0366 (13)−0.0148 (12)0.0114 (11)−0.0276 (13)
C270.0320 (10)0.0283 (11)0.0331 (11)−0.0114 (8)0.0018 (9)−0.0107 (9)
C280.0266 (11)0.0852 (18)0.0659 (15)−0.0084 (11)0.0010 (10)−0.0474 (15)
C290.0187 (9)0.0516 (14)0.0517 (14)−0.0080 (9)0.0041 (9)−0.0280 (12)
C300.0305 (11)0.0498 (14)0.0603 (15)−0.0047 (10)0.0035 (10)−0.0213 (13)
C310.0351 (12)0.100 (2)0.0500 (14)−0.0094 (14)0.0028 (11)−0.0306 (16)
C320.0425 (14)0.112 (3)0.094 (2)−0.0270 (16)0.0149 (14)−0.078 (2)
C330.0529 (15)0.0646 (19)0.119 (3)−0.0260 (14)0.0207 (16)−0.059 (2)
C340.0408 (12)0.0527 (15)0.0654 (16)−0.0159 (11)0.0111 (11)−0.0176 (14)

Geometric parameters (Å, °)

Mn1—O12.1925 (11)C11—H110.9300
Mn1—O1i2.1925 (11)C12—C131.380 (2)
Mn1—N3i2.2891 (15)C12—H120.9300
Mn1—N32.2891 (15)C13—H130.9300
Mn1—N12.3504 (12)C14—C151.380 (3)
Mn1—N1i2.3505 (12)C14—C181.382 (3)
Mn2—N4ii2.3374 (15)C14—H140.9300
Mn2—N4iii2.3374 (15)C15—H150.9300
Mn2—N22.3425 (14)C16—C171.376 (3)
Mn2—N2iv2.3425 (14)C16—H160.9300
Mn2—Cliv2.5081 (5)C17—C181.381 (3)
Mn2—Cl2.5081 (5)C17—H170.9300
O1—C271.263 (2)C18—C191.508 (3)
O2—C271.2309 (19)C19—C201.545 (3)
N1—C31.330 (2)C19—H19B0.9700
N1—C21.338 (2)C19—H19A0.9700
N2—C121.337 (2)C20—C211.522 (3)
N2—C111.340 (2)C20—H20B0.9700
N3—C161.334 (2)C20—H20A0.9700
N3—C151.341 (2)C21—C221.506 (3)
N4—C241.333 (2)C21—H21A0.9700
N4—C251.339 (2)C21—H21B0.9700
N4—Mn2v2.3374 (15)C22—C261.382 (3)
C1—C21.374 (2)C22—C231.391 (2)
C1—C51.378 (2)C23—C241.380 (3)
C1—H10.9300C23—H230.9300
C2—H20.9300C24—H240.9300
C3—C41.384 (2)C25—C261.371 (3)
C3—H30.9300C25—H250.9300
C4—C51.371 (2)C26—H260.9300
C4—H40.9300C27—C281.524 (3)
C5—C61.507 (2)C28—C291.501 (2)
C6—C71.518 (3)C28—H28B0.9700
C6—H6B0.9700C28—H28A0.9700
C6—H6A0.9700C29—C301.381 (3)
C7—C81.532 (2)C29—C341.381 (3)
C7—H7A0.9700C30—C311.391 (3)
C7—H7B0.9700C30—H300.9300
C8—C91.504 (2)C31—C321.360 (4)
C8—H8B0.9700C31—H310.9300
C8—H8A0.9700C32—C331.354 (4)
C9—C101.379 (2)C32—H320.9300
C9—C131.385 (2)C33—C341.372 (3)
C10—C111.376 (2)C33—H330.9300
C10—H100.9300C34—H340.9300
O1—Mn1—O1i180.00 (8)N2—C11—H11118.0
O1—Mn1—N3i86.18 (5)C10—C11—H11118.0
O1i—Mn1—N3i93.82 (5)N2—C12—C13123.72 (16)
O1—Mn1—N393.82 (5)N2—C12—H12118.1
O1i—Mn1—N386.18 (5)C13—C12—H12118.1
N3i—Mn1—N3180.00 (7)C12—C13—C9120.04 (17)
O1—Mn1—N194.53 (4)C12—C13—H13120.0
O1i—Mn1—N185.47 (4)C9—C13—H13120.0
N3i—Mn1—N195.63 (5)C15—C14—C18120.39 (17)
N3—Mn1—N184.37 (5)C15—C14—H14119.8
O1—Mn1—N1i85.47 (4)C18—C14—H14119.8
O1i—Mn1—N1i94.53 (4)N3—C15—C14122.83 (16)
N3i—Mn1—N1i84.37 (5)N3—C15—H15118.6
N3—Mn1—N1i95.63 (5)C14—C15—H15118.6
N1—Mn1—N1i179.999 (2)N3—C16—C17124.04 (17)
N4ii—Mn2—N4iii180.0N3—C16—H16118.0
N4ii—Mn2—N289.48 (5)C17—C16—H16118.0
N4iii—Mn2—N290.52 (5)C16—C17—C18119.62 (16)
N4ii—Mn2—N2iv90.52 (5)C16—C17—H17120.2
N4iii—Mn2—N2iv89.48 (5)C18—C17—H17120.2
N2—Mn2—N2iv180.0C17—C18—C14116.66 (17)
N4ii—Mn2—Cliv90.26 (4)C17—C18—C19120.68 (17)
N4iii—Mn2—Cliv89.74 (4)C14—C18—C19122.58 (18)
N2—Mn2—Cliv91.14 (4)C18—C19—C20111.16 (17)
N2iv—Mn2—Cliv88.86 (4)C18—C19—H19B109.4
N4ii—Mn2—Cl89.74 (4)C20—C19—H19B109.4
N4iii—Mn2—Cl90.26 (4)C18—C19—H19A109.4
N2—Mn2—Cl88.86 (4)C20—C19—H19A109.4
N2iv—Mn2—Cl91.14 (4)H19B—C19—H19A108.0
Cliv—Mn2—Cl180.0C21—C20—C19112.69 (18)
C27—O1—Mn1146.73 (11)C21—C20—H20B109.1
C3—N1—C2115.84 (14)C19—C20—H20B109.1
C3—N1—Mn1123.51 (11)C21—C20—H20A109.1
C2—N1—Mn1120.59 (10)C19—C20—H20A109.1
C12—N2—C11115.74 (15)H20B—C20—H20A107.8
C12—N2—Mn2124.04 (11)C22—C21—C20113.31 (18)
C11—N2—Mn2120.22 (12)C22—C21—H21A108.9
C16—N3—C15116.38 (15)C20—C21—H21A108.9
C16—N3—Mn1121.77 (12)C22—C21—H21B108.9
C15—N3—Mn1121.06 (11)C20—C21—H21B108.9
C24—N4—C25116.24 (17)H21A—C21—H21B107.7
C24—N4—Mn2v122.37 (11)C26—C22—C23116.10 (19)
C25—N4—Mn2v121.18 (14)C26—C22—C21120.97 (17)
C2—C1—C5120.49 (17)C23—C22—C21122.9 (2)
C2—C1—H1119.8C24—C23—C22119.6 (2)
C5—C1—H1119.8C24—C23—H23120.2
N1—C2—C1123.68 (16)C22—C23—H23120.2
N1—C2—H2118.2N4—C24—C23124.00 (17)
C1—C2—H2118.2N4—C24—H24118.0
N1—C3—C4123.36 (16)C23—C24—H24118.0
N1—C3—H3118.3N4—C25—C26123.3 (2)
C4—C3—H3118.3N4—C25—H25118.4
C5—C4—C3120.74 (16)C26—C25—H25118.4
C5—C4—H4119.6C25—C26—C22120.80 (18)
C3—C4—H4119.6C25—C26—H26119.6
C4—C5—C1115.90 (15)C22—C26—H26119.6
C4—C5—C6121.64 (15)O2—C27—O1125.80 (17)
C1—C5—C6122.42 (16)O2—C27—C28114.92 (16)
C5—C6—C7111.65 (14)O1—C27—C28119.24 (15)
C5—C6—H6B109.3C29—C28—C27119.64 (15)
C7—C6—H6B109.3C29—C28—H28B107.4
C5—C6—H6A109.3C27—C28—H28B107.4
C7—C6—H6A109.3C29—C28—H28A107.4
H6B—C6—H6A108.0C27—C28—H28A107.4
C6—C7—C8114.66 (14)H28B—C28—H28A106.9
C6—C7—H7A108.6C30—C29—C34117.88 (19)
C8—C7—H7A108.6C30—C29—C28120.6 (2)
C6—C7—H7B108.6C34—C29—C28121.4 (2)
C8—C7—H7B108.6C29—C30—C31120.1 (2)
H7A—C7—H7B107.6C29—C30—H30119.9
C9—C8—C7113.34 (15)C31—C30—H30119.9
C9—C8—H8B108.9C32—C31—C30120.6 (3)
C7—C8—H8B108.9C32—C31—H31119.7
C9—C8—H8A108.9C30—C31—H31119.7
C7—C8—H8A108.9C33—C32—C31119.6 (2)
H8B—C8—H8A107.7C33—C32—H32120.2
C10—C9—C13116.48 (16)C31—C32—H32120.2
C10—C9—C8121.62 (15)C32—C33—C34120.6 (2)
C13—C9—C8121.89 (16)C32—C33—H33119.7
C11—C10—C9120.01 (16)C34—C33—H33119.7
C11—C10—H10120.0C33—C34—C29121.1 (2)
C9—C10—H10120.0C33—C34—H34119.4
N2—C11—C10124.01 (17)C29—C34—H34119.4

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z; (iii) x−1, y, z; (iv) −x+1, −y+1, −z; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2721).

References

  • Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179. [PubMed]
  • Carlucci, L., Ciani, G., Proserpiob, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129.
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  • Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography