PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o508.
Published online 2010 February 3. doi:  10.1107/S160053681000317X
PMCID: PMC2983498

(1E,3E,5E,7E)-4,4′-(Octa-1,3,5,7-tetra­ene-1,8-di­yl)dipyridine

Abstract

The title compound, C18H16N2, crystallizes with one and a half independent mol­ecules in the asymmetric unit, with the half-mol­ecule being completed by crystallographic inversion symmetry. Both independent mol­ecules are almost planar, with the non-H atoms exhibiting r.m.s. deviations from the least-squares mol­ecular plane of 0.175 and 0.118 Å, respectively.

Related literature

For the synthesis, see: Woitellier et al. (1989 [triangle]). For the use of the diene and the triene in the synthesis of ladderanes via template-directed photochemistry, see: Gao et al. (2004 [triangle]). For a related structure, see: Bader (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o508-scheme1.jpg

Experimental

Crystal data

  • C18H16N2
  • M r = 260.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o508-efi1.jpg
  • a = 5.5565 (12) Å
  • b = 17.950 (4) Å
  • c = 21.542 (5) Å
  • β = 94.809 (5)°
  • V = 2141.0 (8) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 173 K
  • 0.50 × 0.23 × 0.20 mm

Data collection

  • Siemens SMART 1K diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker 2001 [triangle]) T min = 0.979, T max = 0.986
  • 13659 measured reflections
  • 4727 independent reflections
  • 2195 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.102
  • S = 0.87
  • 4727 reflections
  • 343 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]), PLATON (Spek, 2009 [triangle]) and X-SEED (Barbour, 2001 [triangle])’; software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000317X/ng2706sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000317X/ng2706Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a fellowship to MNA under the Inter­national Research Support Initiative Programme (IRSIP).

supplementary crystallographic information

Comment

The present bispyridyl tetraene is in continuation to our previously reported crystal structure of the bispyridyl triene analog (Bader, 2009). The diene and triene have been used in the synthesis of ladderanes via template directed photochemistry (Gao et al., 2004). The electron transfer properties of metal complexes of bispyridyl polyenes have also been studied and the crystal structure of a metal complex of the title compound was reported (Woitellier et al., 1989).

The title compound crystallizes in the monoclinic crystal system such that there are one and one-half molecules in the asymmetric unit, molecules A and B, respectively. Molecule B resides about an inverison center. The bond lengths of molecules A and B are comparable to the previously published structure of the triene derivative, namely 4-[(1E,3E,5E)-6-(4-pyridyl)hexa-1,3,5-trienyl]pyridine (Bader, 2009) and also the previously reported metal complex of the title compound (Woitellier et al., 1989). Molecules A and B both deviate significantly from planarity (Fig. 3). The root mean square deviation of the carbon and nitrogen atoms from the least squares plane defined by such atoms in molecule A measures 0.175 Å, with N3 deviating from the plane by as much as 0.33 Å. The dihedral angle between the two planar pyridine rings of molecule A measures 7.53(0.11)°. Similarly, the root mean square deviation of the carbon and nitrogen atoms from the least squares plane defined by such atoms in molecule B measures 0.118 Å, with C25 being located 0.17 Å from the plane.

Experimental

The compound was synthesized following the literature method (Woitellier et al., 1989).

Refinement

The C—H = 0.942–0.996 Å, H-atoms were located in difference map and refined: with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The labelled thermal ellipsoids plot with 50% probability level.
Fig. 2.
Unit cell packing for the title compound. Hydrogen atoms have been omitted for clarity.
Fig. 3.
Planarity comparison for unique molecules A and B.

Crystal data

C18H16N2F(000) = 828
Mr = 260.33Dx = 1.211 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1908 reflections
a = 5.5565 (12) Åθ = 2.3–24.0°
b = 17.950 (4) ŵ = 0.07 mm1
c = 21.542 (5) ÅT = 173 K
β = 94.809 (5)°Needle, brown
V = 2141.0 (8) Å30.50 × 0.23 × 0.20 mm
Z = 6

Data collection

Siemens SMART 1K diffractometer2195 reflections with I > 2σ(I)
ω scansRint = 0.061
Absorption correction: multi-scan (SADABS; Bruker 2001)θmax = 27.2°, θmin = 1.9°
Tmin = 0.979, Tmax = 0.986h = −5→7
13659 measured reflectionsk = −20→23
4727 independent reflectionsl = −27→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.87w = 1/[σ2(Fo2) + (0.0357P)2] where P = (Fo2 + 2Fc2)/3
4727 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.3021 (3)0.65494 (9)0.12504 (7)0.0448 (4)
N21.1856 (3)0.05066 (10)0.59878 (8)0.0536 (5)
N30.7464 (3)0.29359 (9)0.24722 (7)0.0469 (4)
C1−0.4416 (4)0.59659 (12)0.13700 (9)0.0436 (5)
C2−0.3757 (3)0.54235 (11)0.18034 (9)0.0384 (5)
C3−0.1522 (3)0.54509 (10)0.21419 (8)0.0343 (5)
C4−0.0079 (3)0.60627 (11)0.20284 (8)0.0376 (5)
C5−0.0885 (4)0.65812 (12)0.15892 (9)0.0433 (5)
C6−0.0763 (4)0.48508 (11)0.25731 (9)0.0385 (5)
C70.1333 (4)0.47926 (11)0.29196 (8)0.0385 (5)
C80.2023 (4)0.41530 (11)0.32953 (8)0.0381 (5)
C90.4162 (4)0.40603 (11)0.36246 (8)0.0389 (5)
C100.4835 (4)0.33966 (11)0.39705 (8)0.0379 (5)
C110.6999 (4)0.32671 (11)0.42754 (8)0.0386 (5)
C120.7613 (4)0.25807 (11)0.45946 (8)0.0375 (5)
C130.9763 (4)0.24363 (11)0.48963 (8)0.0383 (5)
C141.0455 (3)0.17596 (10)0.52440 (8)0.0346 (5)
C150.8974 (4)0.11369 (11)0.52742 (9)0.0418 (5)
C160.9740 (4)0.05425 (12)0.56460 (10)0.0480 (6)
C171.3282 (4)0.11009 (13)0.59511 (10)0.0526 (6)
C181.2671 (3)0.17204 (12)0.55905 (9)0.0436 (5)
C190.5479 (4)0.25131 (12)0.24915 (9)0.0444 (5)
C200.4693 (3)0.20009 (11)0.20450 (9)0.0391 (5)
C210.5991 (3)0.18927 (10)0.15268 (8)0.0346 (5)
C220.8084 (3)0.23195 (11)0.15099 (9)0.0415 (5)
C230.8709 (4)0.28191 (12)0.19777 (10)0.0459 (5)
C240.5221 (3)0.14039 (11)0.10062 (9)0.0388 (5)
C250.3179 (4)0.10021 (10)0.09310 (9)0.0388 (5)
C260.2444 (4)0.05851 (11)0.03763 (9)0.0409 (5)
C270.0375 (4)0.01998 (10)0.02796 (8)0.0410 (5)
H1−0.601 (3)0.5947 (10)0.1124 (7)0.049*
H2−0.481 (3)0.5029 (10)0.1877 (8)0.049*
H40.151 (3)0.6145 (9)0.2237 (7)0.049*
H50.016 (3)0.6982 (10)0.1492 (7)0.049*
H6−0.194 (3)0.4458 (10)0.2585 (8)0.049*
H70.258 (3)0.5183 (10)0.2906 (7)0.049*
H80.077 (3)0.3763 (10)0.3290 (7)0.049*
H90.539 (3)0.4467 (10)0.3614 (7)0.049*
H100.361 (3)0.3004 (10)0.3966 (7)0.049*
H110.826 (3)0.3624 (10)0.4272 (8)0.049*
H120.633 (3)0.2204 (10)0.4577 (7)0.049*
H131.103 (3)0.2809 (10)0.4894 (7)0.049*
H150.739 (3)0.1129 (10)0.5057 (8)0.049*
H160.864 (3)0.0118 (10)0.5671 (8)0.049*
H171.483 (3)0.1070 (10)0.6207 (8)0.049*
H181.381 (3)0.2120 (10)0.5576 (7)0.049*
H190.457 (3)0.2596 (9)0.2858 (7)0.049*
H200.319 (3)0.1734 (10)0.2092 (7)0.049*
H220.903 (3)0.2249 (9)0.1158 (7)0.049*
H231.019 (3)0.3124 (10)0.1963 (7)0.049*
H240.628 (3)0.1390 (9)0.0662 (8)0.049*
H250.207 (3)0.1001 (9)0.1263 (7)0.049*
H260.355 (3)0.0600 (9)0.0042 (8)0.049*
H27−0.071 (3)0.0190 (9)0.0619 (7)0.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0449 (11)0.0430 (12)0.0459 (10)0.0082 (9)0.0007 (9)0.0022 (8)
N20.0463 (11)0.0473 (12)0.0672 (13)0.0057 (9)0.0044 (10)0.0136 (9)
N30.0500 (11)0.0411 (11)0.0501 (11)−0.0068 (9)0.0065 (9)−0.0035 (8)
C10.0402 (13)0.0470 (15)0.0424 (13)0.0078 (11)−0.0024 (10)−0.0058 (11)
C20.0378 (12)0.0369 (13)0.0405 (12)−0.0004 (9)0.0029 (10)−0.0054 (10)
C30.0378 (11)0.0324 (12)0.0330 (11)0.0023 (9)0.0049 (9)−0.0040 (9)
C40.0335 (11)0.0393 (13)0.0400 (12)−0.0003 (10)0.0028 (9)0.0024 (10)
C50.0424 (13)0.0398 (14)0.0480 (13)0.0016 (10)0.0059 (11)0.0071 (11)
C60.0437 (13)0.0315 (13)0.0401 (12)−0.0002 (9)0.0029 (10)−0.0028 (9)
C70.0488 (13)0.0311 (13)0.0358 (12)−0.0022 (9)0.0034 (10)0.0012 (9)
C80.0476 (13)0.0310 (12)0.0357 (11)0.0008 (9)0.0040 (10)0.0001 (9)
C90.0520 (13)0.0308 (13)0.0336 (11)−0.0021 (10)0.0022 (10)−0.0011 (9)
C100.0508 (14)0.0306 (13)0.0321 (11)−0.0005 (9)0.0025 (10)−0.0023 (9)
C110.0504 (14)0.0326 (13)0.0330 (11)−0.0035 (10)0.0033 (10)−0.0007 (9)
C120.0480 (13)0.0311 (13)0.0335 (11)0.0002 (9)0.0033 (10)−0.0022 (9)
C130.0449 (13)0.0324 (13)0.0373 (11)−0.0021 (9)0.0023 (10)−0.0011 (9)
C140.0358 (11)0.0353 (12)0.0333 (11)0.0026 (9)0.0061 (9)−0.0032 (9)
C150.0415 (12)0.0382 (13)0.0454 (13)−0.0001 (10)0.0022 (10)0.0002 (10)
C160.0471 (14)0.0398 (14)0.0572 (14)−0.0024 (11)0.0062 (11)0.0082 (11)
C170.0419 (14)0.0562 (17)0.0590 (15)0.0076 (12)0.0009 (11)0.0135 (12)
C180.0401 (13)0.0400 (14)0.0505 (13)−0.0019 (10)0.0030 (11)0.0037 (11)
C190.0505 (14)0.0421 (14)0.0416 (13)−0.0030 (11)0.0100 (10)−0.0022 (10)
C200.0375 (12)0.0356 (13)0.0444 (12)−0.0053 (9)0.0050 (10)0.0029 (10)
C210.0400 (11)0.0290 (12)0.0345 (11)0.0022 (9)0.0022 (9)0.0049 (9)
C220.0436 (13)0.0411 (14)0.0408 (12)−0.0033 (10)0.0082 (10)0.0017 (10)
C230.0424 (13)0.0440 (14)0.0514 (14)−0.0091 (10)0.0039 (11)0.0035 (11)
C240.0457 (13)0.0344 (12)0.0372 (12)0.0035 (10)0.0090 (10)0.0019 (9)
C250.0463 (13)0.0298 (12)0.0407 (13)0.0033 (10)0.0053 (10)0.0005 (10)
C260.0510 (14)0.0332 (13)0.0386 (13)0.0036 (10)0.0045 (10)0.0014 (10)
C270.0510 (14)0.0309 (12)0.0409 (13)0.0030 (10)0.0031 (10)0.0015 (9)

Geometric parameters (Å, °)

N1—C11.341 (2)C12—H120.982 (17)
N1—C51.341 (2)C13—C141.462 (2)
N2—C171.335 (2)C13—H130.972 (17)
N2—C161.335 (2)C14—C181.387 (2)
N3—C231.334 (2)C14—C151.393 (2)
N3—C191.342 (2)C15—C161.380 (3)
C1—C21.377 (3)C15—H150.962 (16)
C1—H10.996 (16)C16—H160.981 (17)
C2—C31.387 (2)C17—C181.382 (3)
C2—H20.942 (17)C17—H170.984 (16)
C3—C41.394 (2)C18—H180.960 (17)
C3—C61.461 (3)C19—C201.375 (3)
C4—C51.375 (2)C19—H190.983 (16)
C4—H40.968 (16)C20—C211.392 (2)
C5—H50.960 (17)C20—H200.974 (17)
C6—C71.334 (2)C21—C221.396 (2)
C6—H60.964 (17)C21—C241.460 (2)
C7—C81.438 (2)C22—C231.372 (3)
C7—H70.986 (17)C22—H220.966 (16)
C8—C91.343 (2)C23—H230.990 (17)
C8—H80.987 (17)C24—C251.343 (2)
C9—C101.438 (3)C24—H240.985 (16)
C9—H91.000 (17)C25—C261.440 (2)
C10—C111.341 (2)C25—H250.983 (16)
C10—H100.981 (17)C26—C271.343 (2)
C11—C121.438 (2)C26—H260.986 (16)
C11—H110.951 (17)C27—C27i1.434 (4)
C12—C131.337 (2)C27—H270.985 (16)
C1—N1—C5115.34 (17)C18—C14—C15115.83 (19)
C17—N2—C16115.36 (19)C18—C14—C13120.08 (18)
C23—N3—C19114.71 (18)C15—C14—C13124.05 (17)
N1—C1—C2123.89 (19)C16—C15—C14119.54 (19)
N1—C1—H1115.4 (10)C16—C15—H15119.8 (11)
C2—C1—H1120.7 (10)C14—C15—H15120.6 (11)
C1—C2—C3120.4 (2)N2—C16—C15124.9 (2)
C1—C2—H2120.7 (11)N2—C16—H16117.1 (10)
C3—C2—H2118.8 (11)C15—C16—H16118.0 (10)
C2—C3—C4116.02 (18)N2—C17—C18123.9 (2)
C2—C3—C6120.39 (18)N2—C17—H17114.7 (11)
C4—C3—C6123.57 (17)C18—C17—H17121.5 (11)
C5—C4—C3119.67 (18)C17—C18—C14120.5 (2)
C5—C4—H4116.6 (10)C17—C18—H18119.2 (10)
C3—C4—H4123.7 (10)C14—C18—H18120.3 (10)
N1—C5—C4124.6 (2)N3—C19—C20124.76 (19)
N1—C5—H5116.0 (10)N3—C19—H19114.6 (10)
C4—C5—H5119.2 (10)C20—C19—H19120.6 (10)
C7—C6—C3127.26 (19)C19—C20—C21119.91 (18)
C7—C6—H6119.5 (10)C19—C20—H20118.8 (10)
C3—C6—H6113.3 (10)C21—C20—H20121.3 (10)
C6—C7—C8123.8 (2)C20—C21—C22115.66 (18)
C6—C7—H7120.6 (10)C20—C21—C24124.18 (18)
C8—C7—H7115.5 (10)C22—C21—C24120.07 (17)
C9—C8—C7125.36 (19)C23—C22—C21119.98 (19)
C9—C8—H8120.8 (10)C23—C22—H22122.8 (10)
C7—C8—H8113.8 (10)C21—C22—H22117.2 (10)
C8—C9—C10123.8 (2)N3—C23—C22124.97 (19)
C8—C9—H9118.2 (10)N3—C23—H23115.3 (10)
C10—C9—H9117.9 (10)C22—C23—H23119.8 (10)
C11—C10—C9125.5 (2)C25—C24—C21127.29 (18)
C11—C10—H10118.3 (10)C25—C24—H24116.6 (10)
C9—C10—H10116.1 (10)C21—C24—H24116.0 (10)
C10—C11—C12123.34 (19)C24—C25—C26123.86 (19)
C10—C11—H11120.8 (11)C24—C25—H25119.3 (10)
C12—C11—H11115.8 (11)C26—C25—H25116.8 (10)
C13—C12—C11124.4 (2)C27—C26—C25125.16 (19)
C13—C12—H12120.2 (10)C27—C26—H26118.6 (10)
C11—C12—H12115.4 (10)C25—C26—H26116.3 (10)
C12—C13—C14126.60 (19)C26—C27—C27i124.9 (3)
C12—C13—H13118.8 (10)C26—C27—H27117.6 (10)
C14—C13—H13114.6 (10)C27i—C27—H27117.5 (10)
C5—N1—C1—C2−0.4 (3)C13—C14—C15—C16−176.12 (18)
N1—C1—C2—C3−1.0 (3)C17—N2—C16—C15−0.3 (3)
C1—C2—C3—C42.1 (3)C14—C15—C16—N2−0.6 (3)
C1—C2—C3—C6−176.14 (17)C16—N2—C17—C180.1 (3)
C2—C3—C4—C5−1.7 (3)N2—C17—C18—C140.9 (3)
C6—C3—C4—C5176.43 (18)C15—C14—C18—C17−1.7 (3)
C1—N1—C5—C40.8 (3)C13—C14—C18—C17176.04 (18)
C3—C4—C5—N10.3 (3)C23—N3—C19—C20−1.0 (3)
C2—C3—C6—C7178.71 (19)N3—C19—C20—C210.1 (3)
C4—C3—C6—C70.7 (3)C19—C20—C21—C221.2 (3)
C3—C6—C7—C8−174.69 (18)C19—C20—C21—C24−175.40 (18)
C6—C7—C8—C9176.5 (2)C20—C21—C22—C23−1.6 (3)
C7—C8—C9—C10−176.75 (17)C24—C21—C22—C23175.19 (17)
C8—C9—C10—C11176.03 (19)C19—N3—C23—C220.6 (3)
C9—C10—C11—C12−177.47 (17)C21—C22—C23—N30.7 (3)
C10—C11—C12—C13179.32 (19)C20—C21—C24—C251.7 (3)
C11—C12—C13—C14177.90 (17)C22—C21—C24—C25−174.80 (18)
C12—C13—C14—C18−172.99 (19)C21—C24—C25—C26174.09 (18)
C12—C13—C14—C154.5 (3)C24—C25—C26—C27−177.56 (19)
C18—C14—C15—C161.5 (3)C25—C26—C27—C27i178.4 (2)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2706).

References

  • Bader, M. M. (2009). Acta Cryst. E65, o2006. [PMC free article] [PubMed]
  • Barbour, L. J. (2001). J. Supramol. Chem.1 189–191.
  • Bruker (2001). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gao, X., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed.43, 232–36. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Woitellier, S., Launay, J. P. & Spangler, C. W. (1989). Inorg. Chem.28, 758–762.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography