PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o559–o560.
Published online 2010 February 6. doi:  10.1107/S1600536810003491
PMCID: PMC2983497

(E)-2-Acetyl-4-[(3-methyl­phenyl­)diazen­yl]phenol: an X-ray and DFT study

Abstract

The title compound, C15H14N2O2, an azo dye, displays a trans configuration with respect to the N=N bridge. The dihedral angle between the aromatic rings is 0.18 (14)°. There is a strong intra­molecular O—H(...)O hydrogen bond. Geometrical parameters, determined using X-ray diffraction techniques, are compared with those calculated by density functional theory (DFT), using hybrid exchange–correlation functional, B3LYP and semi-empirical (PM3) methods.

Related literature

For general background to azo compounds, see: Klaus (2003 [triangle]); Catino & Farris (1985 [triangle]); Zollinger (2003 [triangle]); Bahatti & Seshadri (2004 [triangle]); Taniike et al. (1996 [triangle]); Fadda et al. (1994 [triangle]). For a related structure, see: El-Ghamry et al. (2008 [triangle]). For background to DFT calculations, see: Becke (1988 [triangle], 1993 [triangle]); Lee et al. (1988 [triangle]); Schmidt & Polik (2007 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-0o559-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O2
  • M r = 254.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o559-efi1.jpg
  • a = 8.6917 (3) Å
  • b = 10.9728 (3) Å
  • c = 14.6150 (5) Å
  • β = 112.881 (3)°
  • V = 1284.19 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 150 K
  • 0.67 × 0.37 × 0.21 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.957, T max = 0.986
  • 16525 measured reflections
  • 2519 independent reflections
  • 2034 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.175
  • S = 1.06
  • 2519 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and GAUSSIAN (Frisch et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
Selected geometric parameters (Å, °) calculated with X-ray, PM3 and DFT

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003491/bt5181sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003491/bt5181Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

Azo compounds are very important in the field of dyes, pigments and advanced materials (Klaus, 2003). It has been known for many years that the azo compounds are the most widely used class of dyes, due to their versatile applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and polymers, biological-medical studies and advanced applications in organic synthesis (Bahatti & Seshadri, 2004; Catino & Farris, 1985; Fadda et al., 1994; Taniike et al., 1996; Zollinger, 2003).

In the title compound, C15H14N2O2, the two aromatic groups atteched to the azo bridge are adopted (E) configuration. The molecule is planar and the dihedral angle between the two aromatic rings is 0.18(0.14)°. All the bond lengths are in agreement with reported for other azo compounds (El-Ghamry et al., 2008). The title molecule (Fig. 1) has a strong intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom.

Density-functional theory (DFT) (Schmidt & Polik, 2007) and semi-empirical (PM3) calculations and full-geometry optimizations were performed by means of GAUSSIAN 03 W package (Frisch et al., 2004). The selected bond lengths and angles (Table 2.) obtained from semi-empirical and DFT/B3LYP (Becke, 1988; Becke 1993; Lee et al. 1988) are given in Table 2. As can be seen Table 2. the bond lenghts and angles achieved by DFT method are better than those values obtained from PM3 method.

Experimental

A mixture of 3-methylaniline (0.83 g, 7.8 mmol), water (20 ml) and concentrated hydrochloric acid (1.97 ml, 23.4 mmol) was stirred until a clear solution was obtained. This solution was cooled down to 0–5 °C and a solution of sodium nitrite (0.75 g 7.8 mmol) in water was added dropwise while the temperature was maintained below 5 °C. The resulting mixture was stirred for 30 min in an ice bath. 2-hydroxyacetophenone (1.067 g, 7.8 mmol solution (pH 9) was gradually added to a cooled solution of 3-methylbenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at 0–5 °C for 2 h in ice bath. The product was recrystallized from ethyl alcohol to obtain solid (E)-2-Acetyl-4- (3-methylphenyldiazenyl)phenol. Crystals of (E)-2-Acetyl-4-(3-methylphenyldiazenyl)phenol were obtained after one day by slow evaporation from acetic acid (yield %45, m.p.= 377–379 K)

Refinement

All H atoms (except for H1) were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.97 Å, O—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The hydroxyl H atom was isotropically refined.

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond.

Crystal data

C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20945 reflections
a = 8.6917 (3) Åθ = 1.9–28.0°
b = 10.9728 (3) ŵ = 0.09 mm1
c = 14.6150 (5) ÅT = 150 K
β = 112.881 (3)°Prism, brown
V = 1284.19 (7) Å30.67 × 0.37 × 0.21 mm
Z = 4

Data collection

Stoe IPDS II diffractometer2519 independent reflections
Radiation source: fine-focus sealed tube2034 reflections with I > 2σ(I)
graphiteRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scanh = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −13→13
Tmin = 0.957, Tmax = 0.986l = −18→18
16525 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0859P)2 + 0.7485P] where P = (Fo2 + 2Fc2)/3
2519 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. 330 frames, detector distance = 80 mm
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7697 (3)0.49666 (19)0.56898 (15)0.0354 (5)
C20.7798 (2)0.48461 (19)0.66522 (14)0.0337 (5)
H20.71880.53710.68820.040*
C30.8796 (3)0.39527 (19)0.72861 (15)0.0340 (5)
C40.9690 (3)0.3160 (2)0.69197 (16)0.0385 (5)
C50.9567 (3)0.3271 (2)0.59383 (17)0.0433 (5)
H51.01500.27370.56950.052*
C60.8588 (3)0.4165 (2)0.53369 (15)0.0410 (5)
H60.85170.42400.46880.049*
C70.8963 (3)0.3858 (2)0.83278 (16)0.0396 (5)
C80.8087 (3)0.4746 (3)0.87272 (17)0.0506 (6)
H8A0.83230.45600.94100.076*
H8B0.69050.46950.83500.076*
H8C0.84670.55560.86790.076*
C90.5627 (3)0.7083 (2)0.37340 (17)0.0392 (5)
C100.5540 (3)0.7208 (2)0.27821 (17)0.0460 (6)
H100.61460.66920.25430.055*
C110.4544 (3)0.8107 (2)0.21837 (18)0.0482 (6)
H110.44650.81970.15340.058*
C120.3654 (3)0.8882 (2)0.25587 (17)0.0447 (6)
H120.29700.94790.21480.054*
C130.3764 (3)0.8785 (2)0.35255 (17)0.0426 (5)
C140.4774 (3)0.7866 (2)0.41242 (16)0.0426 (5)
H140.48750.77780.47780.051*
C150.2821 (3)0.9642 (3)0.39089 (19)0.0546 (7)
H15A0.30370.94480.45880.082*
H15B0.16470.95660.35170.082*
H15C0.31711.04630.38680.082*
N10.6655 (2)0.60844 (18)0.42943 (14)0.0435 (5)
N20.6666 (2)0.59649 (18)0.51418 (13)0.0431 (5)
O11.0685 (2)0.22765 (17)0.74768 (14)0.0523 (5)
O20.9858 (2)0.30620 (17)0.88764 (12)0.0522 (5)
H11.055 (4)0.235 (3)0.801 (3)0.076 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0362 (10)0.0347 (11)0.0302 (10)−0.0037 (8)0.0074 (8)0.0012 (8)
C20.0342 (10)0.0327 (10)0.0320 (10)−0.0026 (8)0.0106 (8)−0.0006 (8)
C30.0347 (10)0.0348 (11)0.0299 (10)−0.0039 (8)0.0098 (8)0.0018 (8)
C40.0386 (11)0.0354 (11)0.0376 (11)0.0018 (9)0.0104 (9)0.0055 (9)
C50.0475 (13)0.0427 (13)0.0401 (12)0.0041 (10)0.0174 (10)−0.0026 (10)
C60.0460 (12)0.0458 (13)0.0286 (10)−0.0039 (10)0.0118 (9)0.0002 (9)
C70.0359 (11)0.0473 (13)0.0320 (10)−0.0061 (10)0.0091 (9)0.0061 (9)
C80.0533 (14)0.0671 (16)0.0326 (11)0.0004 (12)0.0181 (10)0.0003 (11)
C90.0378 (11)0.0343 (11)0.0432 (11)−0.0041 (9)0.0133 (9)0.0002 (9)
C100.0511 (13)0.0437 (13)0.0426 (12)−0.0030 (11)0.0177 (11)−0.0016 (10)
C110.0524 (14)0.0438 (13)0.0435 (12)−0.0035 (11)0.0133 (11)0.0023 (10)
C120.0467 (12)0.0375 (12)0.0401 (12)−0.0023 (10)0.0062 (10)0.0058 (9)
C130.0404 (12)0.0379 (12)0.0430 (12)−0.0038 (10)0.0093 (10)0.0027 (10)
C140.0436 (12)0.0471 (13)0.0341 (11)−0.0097 (10)0.0119 (9)0.0002 (9)
C150.0554 (15)0.0574 (16)0.0500 (14)0.0057 (12)0.0196 (12)0.0049 (12)
N10.0464 (11)0.0442 (11)0.0375 (10)−0.0024 (9)0.0137 (8)0.0008 (8)
N20.0430 (10)0.0478 (11)0.0309 (9)−0.0097 (9)0.0060 (8)0.0069 (8)
O10.0587 (11)0.0491 (10)0.0484 (10)0.0193 (8)0.0201 (9)0.0144 (8)
O20.0554 (10)0.0611 (11)0.0381 (8)0.0056 (8)0.0161 (8)0.0179 (8)

Geometric parameters (Å, °)

C1—C21.381 (3)C9—C101.371 (3)
C1—C61.396 (3)C9—C141.393 (3)
C1—N21.444 (3)C9—N11.450 (3)
C2—C31.395 (3)C10—C111.378 (3)
C2—H20.9300C10—H100.9300
C3—C41.404 (3)C11—C121.397 (4)
C3—C71.476 (3)C11—H110.9300
C4—O11.343 (3)C12—C131.383 (3)
C4—C51.402 (3)C12—H120.9300
C5—C61.371 (3)C13—C141.398 (3)
C5—H50.9300C13—C151.493 (4)
C6—H60.9300C14—H140.9300
C7—O21.235 (3)C15—H15A0.9600
C7—C81.488 (3)C15—H15B0.9600
C8—H8A0.9600C15—H15C0.9600
C8—H8B0.9600N1—N21.242 (3)
C8—H8C0.9600O1—H10.83 (4)
C2—C1—C6119.43 (19)C10—C9—C14121.7 (2)
C2—C1—N2114.66 (19)C10—C9—N1115.3 (2)
C6—C1—N2125.89 (19)C14—C9—N1123.0 (2)
C1—C2—C3121.3 (2)C9—C10—C11119.3 (2)
C1—C2—H2119.3C9—C10—H10120.4
C3—C2—H2119.3C11—C10—H10120.4
C2—C3—C4118.39 (19)C10—C11—C12119.6 (2)
C2—C3—C7121.4 (2)C10—C11—H11120.2
C4—C3—C7120.20 (19)C12—C11—H11120.2
O1—C4—C5117.2 (2)C13—C12—C11121.7 (2)
O1—C4—C3122.5 (2)C13—C12—H12119.2
C5—C4—C3120.23 (19)C11—C12—H12119.2
C6—C5—C4120.0 (2)C12—C13—C14118.2 (2)
C6—C5—H5120.0C12—C13—C15120.3 (2)
C4—C5—H5120.0C14—C13—C15121.5 (2)
C5—C6—C1120.6 (2)C9—C14—C13119.5 (2)
C5—C6—H6119.7C9—C14—H14120.2
C1—C6—H6119.7C13—C14—H14120.2
O2—C7—C3120.3 (2)C13—C15—H15A109.5
O2—C7—C8119.8 (2)C13—C15—H15B109.5
C3—C7—C8119.90 (19)H15A—C15—H15B109.5
C7—C8—H8A109.5C13—C15—H15C109.5
C7—C8—H8B109.5H15A—C15—H15C109.5
H8A—C8—H8B109.5H15B—C15—H15C109.5
C7—C8—H8C109.5N2—N1—C9114.0 (2)
H8A—C8—H8C109.5N1—N2—C1113.3 (2)
H8B—C8—H8C109.5C4—O1—H1102 (2)
C6—C1—C2—C31.1 (3)C4—C3—C7—C8176.5 (2)
N2—C1—C2—C3−177.57 (18)C14—C9—C10—C11−2.0 (3)
C1—C2—C3—C4−0.8 (3)N1—C9—C10—C11177.8 (2)
C1—C2—C3—C7177.24 (19)C9—C10—C11—C120.6 (3)
C2—C3—C4—O1179.8 (2)C10—C11—C12—C131.0 (4)
C7—C3—C4—O11.7 (3)C11—C12—C13—C14−1.3 (3)
C2—C3—C4—C5−0.2 (3)C11—C12—C13—C15178.9 (2)
C7—C3—C4—C5−178.3 (2)C10—C9—C14—C131.8 (3)
O1—C4—C5—C6−179.1 (2)N1—C9—C14—C13−178.01 (19)
C3—C4—C5—C60.9 (3)C12—C13—C14—C9−0.1 (3)
C4—C5—C6—C1−0.5 (3)C15—C13—C14—C9179.7 (2)
C2—C1—C6—C5−0.5 (3)C10—C9—N1—N2−177.6 (2)
N2—C1—C6—C5178.1 (2)C14—C9—N1—N22.2 (3)
C2—C3—C7—O2−179.8 (2)C9—N1—N2—C1−179.99 (17)
C4—C3—C7—O2−1.8 (3)C2—C1—N2—N1177.09 (19)
C2—C3—C7—C8−1.4 (3)C6—C1—N2—N1−1.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (4)1.78 (4)2.567 (3)156 (4)

Table 2 Selected geometric parameters (Å, °) calculated with X-RAY, PM3 and DFT

ParametersX-rayPM3DFT/B3LYP*
C4—O11.343 (3)1.3511.331
C7—O21.235 (3)1.2281.242
C7—C81.488 (3)1.5021.513
C13—C151.493 (4)1.4861.511
C1—N21.444 (3)1.4451.411
N1—N21.242 (3)1.2321.263
C9—N11.450 (3)1.4471.417
O2—C7—C8119.8 (2)120.465118.986
O1—C4—C5117.2 (2)115.387118.123
C7—C3—C4—O11.7 (3)-0.0160.002
C9—N1—N2—C1-179.99 (17)-179.965-179.975
C2—C1—N2—N1177.09 (19)-178.543179.996
C10—C9—N1—N2-177.6 (2)-172.651179.997

*6-31G(d,p).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5181).

References

  • Bahatti, H. S. & Seshadri, S. (2004). Coloration Technol.120, 151–155.
  • Becke, A. D. (1988). Phys. Rev.A38, 3098–100. [PubMed]
  • Becke, A. D. (1993). J. Chem. Phys.98, 5648–5652.
  • Catino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, pp. 142–144. New York: John Wiley and Sons
  • El-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673–o1674. [PMC free article] [PubMed]
  • Fadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. (1994). J. Chem. Technol. Biotechnol.61, 343–349.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Frisch, M. J., et al. (2004). GAUSSIAN03 Gaussian Inc., Wallingford, CT, USA.
  • Klaus, H. (2003). Industrial dyes, chemistry, properties, applications, pp. 20–35. New York: Wiley-VCH.
  • Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev.B37, 785–789. [PubMed]
  • Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
  • Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem.100, 15508–15516.
  • Zollinger, H. (2003). Color Chemistry, 3rd revised ed. New York: Wiley-VCH.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography