PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m296–m297.
Published online 2010 February 13. doi:  10.1107/S160053681000560X
PMCID: PMC2983495

Bis[μ-N,N′-bis(2,6-diisopropylphenyl)ethene-1,2-diamido]-1,4(η2);1:2κ4 N:N;3:4κ4 N:N-bis(diethyl ether)-1κO,4κO-di-μ-hydrido-2:3κ4 H:H-2,3-dichromium(II)-1,4-dilithium(I) pentane hemisolvate

Abstract

The title compound, [Cr2Li2(C26H36N2)2(μ-H)2(C4H10O)2]·0.5C5H12, is a binuclear chromium complex bridged by two hydrogen atoms. Each chromium atom is coordinated in a distorted square-planar geometry by one chelating bis­(2,6-diisopropyl­phen­yl)ethene-1,2-diamido ligand via its two N atoms. Additionally, two diametrically opposed lithium ether adducts coordinate in an η4 mode on the backbone of the ligands. There is a crystallographic inversion center in the middle of the Cr2H2 ring. One of the isopropyl groups is disordered over two positions in a 0.567 (7):0.433 (7) ratio. Disorder is also observed in the pentane hemisolvate molecule.

Related literature

For other binuclear dihydrido-bridged chromium complexes, see: Fryzuk et al. (1994 [triangle]), MacAdams et al. (2003 [triangle]), Albahily et al. (2008 [triangle]); Rozenel et al. (2009 [triangle]). For the role of binuclear dihydrido-bridged chromium complexes in selective oligomer­ization of ethyl­ene, see: Overett et al. (2005 [triangle]). For similar coordination of alkali metals in a metal–diimine complex, see: Baker et al. (2005 [triangle]). For the binuclear starting compound of this synthesis, see: Peitz et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m296-scheme1.jpg

Experimental

Crystal data

  • [Cr2Li2(C26H36N2)2H2(C4H10O)2]·0.5C5H12
  • M r = 1057.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m296-efi1.jpg
  • a = 12.2577 (5) Å
  • b = 12.3525 (6) Å
  • c = 12.9708 (6) Å
  • α = 67.827 (4)°
  • β = 75.039 (3)°
  • γ = 66.773 (3)°
  • V = 1657.46 (14) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 200 K
  • 0.50 × 0.40 × 0.35 mm

Data collection

  • STOE IPDS II diffractometer
  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005 [triangle]) T min = 0.809, T max = 0.905
  • 23828 measured reflections
  • 6500 independent reflections
  • 4770 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.151
  • S = 0.99
  • 6500 reflections
  • 337 parameters
  • 53 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000560X/im2181sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000560X/im2181Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

supplementary crystallographic information

Comment

Structurally characterized binuclear chromium complexes that are bridged by two hydrogen atoms were reported only four times before (Fryzuk et al., 1994; MacAdams et al., 2003; Albahily et al., 2008; Rozenel et al., 2009). This is the first time such kind of complex is reported with ethene-1,2-diamido ligands. A similar coordination of alkali metals on binuclear metal-1,2-diiminoethane complexes was observed before (Baker et al., 2005).

We became interested in chromium hydride derivatives because they are postulated as intermediates formed in selective oligomerization of ethylene following β-hydride elimination of the hepta- or nonametallacycle, prior to elimination of 1-hexene or 1-octene. Cr dihydride species are suggested to be formed in side-chain reactions during the ethylene tetramerization process (Overett et al., 2005). In order to explore the chemistry of these kinds of complexes, we reacted a binuclear chromium diimine complex (Peitz et al., 2009) with 1,4-dilithiobutane to build up chromacyclopentanes which decompose at room temperature and form a binuclear dihydrido-bridged chromium complex.

The molecular structure of the title compound shows that two chromium(II) centers are bridged by two hydrogen atoms to form a binuclear complex. Each metal center is coordinated by one chelating diimine igand, (i-Pr)2C6H3—NC(H)—C(H)N—C6H3(i-Pr)2, via both N atoms of each ligand. Due to its redox properties this ligand acts as electron acceptor which leads to the shortened C—C and elongated C—N bond lengths in the ligand backbone in comparison to the free diimine ligand, thus forming an ethene-1,2-diamido unit. Additionally, diametrically opposed to each other, two lithium ether adducts coordinate in a η4 mode on the backbone of the ligands which are twisted in an angle of 62.1 (1) ° against each other. The coordination geometry on each chromium center can be best described as distorted square planar (mean deviation from the best plane defined by Cr1—N1—C1—C2—N2 0.046 Å). The Cr1—Cr1' distance of 2.5779 (5) Å is around 0.14 Å shorter than those found in all the other structurally characterized dihydride-bridged chromium dimers and can be interpreted in terms of metal-metal interactions. The Cr—H distances found (both 1.71 (3) Å) are comparable to those of Fryzuk et al. (1.78 (3) and 1.76 (3) Å), MacAdams et al. (1.77 (3) and 1.77 (3) Å), Rozenel et al. (1.84 (2) and 1.85 (2) Å) and Albahily et al. (1.69 and 1.68 Å). The asymmetric unit contains one half of the complex unit and a quarter solvent molecule n-pentane. The other half of the complex unit and a further quarter solvent molecule are generated by the crystallographic inversion center located in the middle of the Cr2H2 ring.

Experimental

1.55 ml of a 0.24 M solution of 1,4-dilithiobutane in diethyl ether were added dropwise to a solution of [(C26H36N2)CrCl(µ-Cl)3Cr(THF)(C26H36N2)].CH2Cl2 (0.40 g, 0.37 mmol) in 2 ml diethyl ether at -78 °C. After stirring over night the solution was filtered and all volatiles were removed in vacuum. Extraction with n-pentane gave a green solution. Crystallization at -30 °C yielded 0.082 g (22%) of red-brown single crystals suitable for X-ray analysis.

Refinement

H1 was located via the difference Fourier map and refined isotropically. All other H atoms were placed in idealized positions with d(C—H) = 0.99 (CH2), 0.98 (CH3) and 0.95-1.00 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH2 and CH.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labelling scheme. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms, solvent and the disorder of the coordinated diethyl ether are not shown for clarity.

Crystal data

[Cr2Li2(C26H36N2)2H2(C4H10O)2]·0.5C5H12Z = 1
Mr = 1057.34F(000) = 573
Triclinic, P1Dx = 1.059 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.2577 (5) ÅCell parameters from 19482 reflections
b = 12.3525 (6) Åθ = 1.8–29.1°
c = 12.9708 (6) ŵ = 0.37 mm1
α = 67.827 (4)°T = 200 K
β = 75.039 (3)°Prism, red-brown
γ = 66.773 (3)°0.50 × 0.40 × 0.35 mm
V = 1657.46 (14) Å3

Data collection

STOE IPDS II diffractometer6500 independent reflections
Radiation source: fine-focus sealed tube4770 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005)h = −15→14
Tmin = 0.809, Tmax = 0.905k = −15→15
23828 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.1013P)2] where P = (Fo2 + 2Fc2)/3
6500 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.69 e Å3
53 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C1−0.0138 (2)0.3858 (2)0.8461 (2)0.0448 (6)
H1A−0.04630.38630.92500.054*
C20.0861 (2)0.2969 (2)0.8219 (2)0.0455 (6)
H2A0.13210.22790.88220.055*
C3−0.1878 (2)0.5549 (2)0.7761 (2)0.0413 (6)
C4−0.2201 (2)0.6843 (3)0.7494 (2)0.0486 (6)
C5−0.3402 (3)0.7530 (3)0.7716 (3)0.0574 (7)
H5A−0.36280.84040.75270.069*
C6−0.4265 (3)0.6977 (3)0.8201 (3)0.0580 (7)
H6A−0.50720.74590.83670.070*
C7−0.3951 (2)0.5724 (3)0.8441 (2)0.0529 (7)
H7A−0.45520.53450.87690.063*
C8−0.2766 (2)0.4982 (2)0.8218 (2)0.0437 (6)
C9−0.2502 (2)0.3615 (3)0.8423 (2)0.0516 (7)
H9A−0.16230.32460.82080.062*
C10−0.2791 (5)0.2931 (4)0.9650 (4)0.1036 (15)
H10A−0.23660.30681.01090.155*
H10B−0.25380.20430.97550.155*
H10C−0.36550.32420.98790.155*
C11−0.3145 (4)0.3402 (4)0.7697 (4)0.0919 (13)
H11A−0.29490.25100.78540.138*
H11B−0.28900.37760.69030.138*
H11C−0.40120.37830.78650.138*
C12−0.1263 (3)0.7472 (3)0.7032 (3)0.0647 (8)
H12A−0.06190.69950.65610.078*
C13−0.0695 (4)0.7370 (5)0.7996 (4)0.0964 (14)
H13A−0.04030.64990.84520.145*
H13B−0.12930.78530.84630.145*
H13C−0.00250.76910.76920.145*
C14−0.1712 (4)0.8802 (4)0.6282 (4)0.1036 (16)
H14A−0.20600.88290.56680.155*
H14B−0.10430.91250.59710.155*
H14C−0.23230.93100.67220.155*
C150.2134 (2)0.2000 (2)0.6846 (2)0.0457 (6)
C160.1805 (3)0.0945 (3)0.7132 (3)0.0584 (7)
C170.2667 (3)−0.0132 (3)0.6939 (3)0.0726 (9)
H17A0.2457−0.08560.71470.087*
C180.3814 (3)−0.0162 (3)0.6454 (3)0.0731 (10)
H18A0.4395−0.09060.63440.088*
C190.4114 (3)0.0889 (3)0.6129 (3)0.0644 (8)
H19A0.48970.08730.57670.077*
C200.3290 (2)0.1984 (3)0.6318 (2)0.0507 (7)
C210.3675 (3)0.3106 (3)0.5935 (3)0.0591 (7)
H21A0.29710.37930.61290.071*
C220.4690 (4)0.2911 (5)0.6533 (4)0.0964 (13)
H22A0.44580.26420.73470.145*
H22B0.48510.36910.63100.145*
H22C0.54120.22750.63270.145*
C230.4011 (4)0.3531 (4)0.4659 (3)0.0795 (10)
H23A0.33390.36780.42900.119*
H23B0.47150.28870.44390.119*
H23C0.41950.42990.44320.119*
C240.0521 (3)0.0961 (3)0.7572 (3)0.0713 (9)
H24A0.00830.17060.78320.086*
C250.0419 (5)−0.0170 (5)0.8554 (4)0.1118 (16)
H25A0.0805−0.02490.91650.168*
H25B0.0815−0.09130.83140.168*
H25C−0.0427−0.00800.88170.168*
C26−0.0091 (4)0.1096 (5)0.6632 (4)0.1061 (15)
H26A−0.00440.18400.60080.159*
H26B−0.09330.11700.69080.159*
H26C0.03080.03660.63740.159*
Cr10.00936 (3)0.44741 (4)0.60558 (3)0.03797 (15)
H10.085 (3)0.427 (3)0.480 (3)0.061 (8)*
N1−0.06604 (17)0.48141 (19)0.75400 (17)0.0401 (5)
N20.12678 (17)0.30968 (19)0.70837 (17)0.0420 (5)
Li10.1189 (4)0.4715 (5)0.7480 (4)0.0572 (12)
O10.2231 (2)0.5599 (2)0.7256 (2)0.0769 (7)
C27A0.2516 (7)0.4269 (7)0.9263 (7)0.082 (2)*0.567 (7)
H27A0.29180.41530.98780.123*0.567 (7)
H27B0.28100.34980.90710.123*0.567 (7)
H27C0.16500.44910.94980.123*0.567 (7)
C28A0.2781 (8)0.5312 (8)0.8233 (6)0.089 (2)*0.567 (7)
H28A0.25120.60720.84520.107*0.567 (7)
H28B0.36590.50810.80190.107*0.567 (7)
C29A0.2652 (9)0.6611 (7)0.6526 (7)0.120 (3)*0.567 (7)
H29A0.35360.63730.63990.144*0.567 (7)
H29B0.22900.73580.67740.144*0.567 (7)
C30A0.2125 (7)0.6730 (7)0.5527 (6)0.081 (2)*0.567 (7)
H30A0.23400.73650.48640.122*0.567 (7)
H30B0.12510.69690.56990.122*0.567 (7)
H30C0.24450.59340.53770.122*0.567 (7)
C27B0.2760 (7)0.4731 (9)0.8854 (8)0.061 (2)*0.433 (7)
H27D0.32280.45770.94340.091*0.433 (7)
H27E0.29720.39660.86700.091*0.433 (7)
H27F0.19050.50030.91320.091*0.433 (7)
C28B0.3035 (11)0.5739 (11)0.7802 (10)0.117 (4)*0.433 (7)
H28C0.27670.65620.79070.140*0.433 (7)
H28D0.38790.55080.74530.140*0.433 (7)
C29B0.2524 (10)0.6262 (7)0.6090 (5)0.087 (3)*0.433 (7)
H29C0.21640.60340.56340.104*0.433 (7)
H29D0.34030.59250.59040.104*0.433 (7)
C30B0.2175 (9)0.7676 (7)0.5671 (8)0.088 (3)*0.433 (7)
H30D0.23860.79560.48550.132*0.433 (7)
H30E0.26040.79320.60290.132*0.433 (7)
H30F0.13100.80450.58620.132*0.433 (7)
C310.6860 (16)0.9785 (17)−0.0580 (15)0.087 (5)*0.25
H31A0.77000.9694−0.06210.131*0.25
H31B0.64811.0550−0.11510.131*0.25
H31C0.68180.9074−0.07140.131*0.25
C320.6249 (15)0.9841 (18)0.0511 (14)0.091 (5)*0.25
H32A0.63151.05440.06540.110*0.25
H32B0.66370.90700.10870.110*0.25
C330.4968 (17)1.000 (2)0.061 (2)0.124 (7)*0.25
H33A0.45431.08990.04410.149*0.25
H33B0.47320.96270.14220.149*0.25
C340.4396 (16)0.957 (2)0.002 (2)0.118 (7)*0.25
H34A0.47550.9725−0.07770.141*0.25
H34B0.45580.86640.03640.141*0.25
C350.3119 (14)1.0198 (16)0.0078 (17)0.077 (4)*0.25
H35A0.27740.9896−0.03170.116*0.25
H35B0.29561.1092−0.02740.116*0.25
H35C0.27601.00330.08660.116*0.25

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0394 (13)0.0572 (15)0.0428 (14)−0.0133 (12)−0.0062 (11)−0.0232 (12)
C20.0393 (14)0.0529 (15)0.0470 (14)−0.0097 (11)−0.0116 (11)−0.0202 (12)
C30.0317 (12)0.0545 (15)0.0403 (13)−0.0096 (11)−0.0024 (10)−0.0238 (11)
C40.0412 (14)0.0521 (15)0.0544 (16)−0.0116 (12)−0.0001 (12)−0.0265 (13)
C50.0483 (16)0.0519 (16)0.0649 (18)−0.0064 (13)−0.0013 (14)−0.0255 (14)
C60.0354 (14)0.0658 (19)0.0613 (18)−0.0027 (13)−0.0018 (12)−0.0253 (15)
C70.0344 (14)0.0680 (18)0.0529 (16)−0.0144 (13)−0.0002 (11)−0.0215 (14)
C80.0357 (13)0.0540 (15)0.0436 (13)−0.0126 (11)−0.0043 (10)−0.0205 (12)
C90.0422 (15)0.0575 (16)0.0609 (17)−0.0195 (12)−0.0041 (12)−0.0231 (14)
C100.150 (4)0.064 (2)0.076 (3)−0.037 (3)0.009 (3)−0.013 (2)
C110.097 (3)0.079 (2)0.126 (4)−0.028 (2)−0.044 (3)−0.040 (2)
C120.0529 (18)0.0580 (18)0.089 (2)−0.0206 (14)0.0121 (16)−0.0402 (17)
C130.074 (3)0.121 (3)0.135 (4)−0.048 (2)0.006 (2)−0.080 (3)
C140.090 (3)0.062 (2)0.136 (4)−0.031 (2)0.024 (3)−0.027 (2)
C150.0384 (14)0.0458 (14)0.0509 (15)−0.0014 (11)−0.0114 (11)−0.0223 (12)
C160.0541 (17)0.0524 (16)0.0704 (19)−0.0100 (13)−0.0069 (14)−0.0296 (15)
C170.078 (2)0.0478 (17)0.085 (2)−0.0088 (16)−0.0058 (19)−0.0300 (17)
C180.066 (2)0.0559 (19)0.081 (2)0.0078 (16)−0.0080 (17)−0.0345 (17)
C190.0470 (17)0.0647 (19)0.069 (2)0.0045 (14)−0.0061 (14)−0.0319 (16)
C200.0390 (14)0.0561 (16)0.0529 (16)−0.0032 (12)−0.0096 (12)−0.0234 (13)
C210.0391 (15)0.0716 (19)0.070 (2)−0.0142 (13)0.0008 (13)−0.0355 (16)
C220.091 (3)0.130 (4)0.094 (3)−0.050 (3)−0.025 (2)−0.040 (3)
C230.079 (3)0.089 (3)0.076 (2)−0.038 (2)−0.0112 (19)−0.022 (2)
C240.064 (2)0.0645 (19)0.101 (3)−0.0257 (16)−0.0001 (18)−0.044 (2)
C250.104 (4)0.141 (4)0.094 (3)−0.062 (3)0.005 (3)−0.029 (3)
C260.076 (3)0.126 (4)0.122 (4)−0.041 (3)−0.022 (3)−0.031 (3)
Cr10.0292 (2)0.0452 (2)0.0423 (2)−0.00587 (15)−0.00548 (15)−0.02277 (17)
N10.0296 (10)0.0497 (12)0.0450 (12)−0.0095 (9)−0.0030 (8)−0.0239 (10)
N20.0338 (11)0.0467 (11)0.0477 (12)−0.0059 (9)−0.0073 (9)−0.0235 (10)
Li10.049 (3)0.074 (3)0.063 (3)−0.024 (2)−0.010 (2)−0.031 (3)
O10.0555 (13)0.0807 (15)0.1092 (19)−0.0318 (12)0.0033 (12)−0.0445 (14)

Geometric parameters (Å, °)

C1—C21.344 (4)C24—H24A1.0000
C1—N11.402 (3)C25—H25A0.9800
C1—Li12.159 (6)C25—H25B0.9800
C1—H1A1.0000C25—H25C0.9800
C2—N21.396 (3)C26—H26A0.9800
C2—Li12.159 (6)C26—H26B0.9800
C2—H2A1.0000C26—H26C0.9800
C3—C81.407 (4)Cr1—N22.023 (2)
C3—C41.410 (4)Cr1—N12.030 (2)
C3—N11.429 (3)Cr1—Cr1i2.5780 (8)
C4—C51.397 (4)Cr1—Li12.704 (4)
C4—C121.510 (4)Cr1—H11.72 (3)
C5—C61.373 (4)N1—Li12.204 (5)
C5—H5A0.9500N2—Li12.206 (5)
C6—C71.367 (4)Li1—O11.891 (5)
C6—H6A0.9500O1—C28B1.445 (5)
C7—C81.402 (4)O1—C29A1.445 (5)
C7—H7A0.9500O1—C28A1.449 (5)
C8—C91.517 (4)O1—C29B1.450 (5)
C9—C101.517 (5)C27A—C28A1.535 (6)
C9—C111.520 (4)C27A—H27A0.9800
C9—H9A1.0000C27A—H27B0.9800
C10—H10A0.9800C27A—H27C0.9800
C10—H10B0.9800C28A—H28A0.9900
C10—H10C0.9800C28A—H28B0.9900
C11—H11A0.9800C29A—C30A1.527 (6)
C11—H11B0.9800C29A—H29A0.9900
C11—H11C0.9800C29A—H29B0.9900
C12—C141.518 (5)C30A—H30A0.9800
C12—C131.525 (5)C30A—H30B0.9800
C12—H12A1.0000C30A—H30C0.9800
C13—H13A0.9800C27B—C28B1.528 (7)
C13—H13B0.9800C27B—H27D0.9800
C13—H13C0.9800C27B—H27E0.9800
C14—H14A0.9800C27B—H27F0.9800
C14—H14B0.9800C28B—H28C0.9900
C14—H14C0.9800C28B—H28D0.9900
C15—C201.402 (4)C29B—C30B1.531 (6)
C15—C161.405 (4)C29B—H29C0.9900
C15—N21.438 (3)C29B—H29D0.9900
C16—C171.398 (4)C30B—H30D0.9800
C16—C241.524 (5)C30B—H30E0.9800
C17—C181.376 (3)C30B—H30F0.9800
C17—H17A0.9500C31—C321.433 (16)
C18—C191.372 (3)C31—H31A0.9800
C18—H18A0.9500C31—H31B0.9800
C19—C201.398 (4)C31—H31C0.9800
C19—H19A0.9500C32—C331.482 (17)
C20—C211.505 (4)C32—H32A0.9900
C21—C221.526 (5)C32—H32B0.9900
C21—C231.531 (5)C33—C341.496 (17)
C21—H21A1.0000C33—H33A0.9900
C22—H22A0.9800C33—H33B0.9900
C22—H22B0.9800C34—C351.444 (16)
C22—H22C0.9800C34—H34A0.9900
C23—H23A0.9800C34—H34B0.9900
C23—H23B0.9800C35—H35A0.9800
C23—H23C0.9800C35—H35B0.9800
C24—C261.515 (6)C35—H35C0.9800
C24—C251.517 (6)
C2—C1—N1116.1 (2)N1—Cr1—Cr1i139.45 (6)
C2—C1—Li171.9 (2)N2—Cr1—Li153.31 (13)
N1—C1—Li173.0 (2)N1—Cr1—Li153.20 (12)
C2—C1—H1A121.9Cr1i—Cr1—Li1133.28 (12)
N1—C1—H1A121.9N2—Cr1—H199.1 (10)
Li1—C1—H1A121.9N1—Cr1—H1173.4 (10)
C1—C2—N2116.8 (2)Cr1i—Cr1—H141.0 (10)
C1—C2—Li171.9 (2)Li1—Cr1—H1120.8 (10)
N2—C2—Li173.20 (19)C1—N1—C3116.5 (2)
C1—C2—H2A121.6C1—N1—Cr1113.00 (15)
N2—C2—H2A121.6C3—N1—Cr1124.17 (15)
Li1—C2—H2A121.6C1—N1—Li169.5 (2)
C8—C3—C4119.8 (2)C3—N1—Li1141.9 (2)
C8—C3—N1119.9 (2)Cr1—N1—Li179.28 (14)
C4—C3—N1120.3 (2)C2—N2—C15115.3 (2)
C5—C4—C3118.6 (3)C2—N2—Cr1113.15 (15)
C5—C4—C12120.4 (3)C15—N2—Cr1125.94 (16)
C3—C4—C12120.9 (2)C2—N2—Li169.51 (19)
C6—C5—C4121.8 (3)C15—N2—Li1139.9 (2)
C6—C5—H5A119.1Cr1—N2—Li179.38 (15)
C4—C5—H5A119.1O1—Li1—C2147.1 (3)
C7—C6—C5119.3 (3)O1—Li1—C1153.6 (3)
C7—C6—H6A120.3C2—Li1—C136.26 (13)
C5—C6—H6A120.3O1—Li1—N1146.7 (3)
C6—C7—C8121.8 (3)C2—Li1—N164.56 (16)
C6—C7—H7A119.1C1—Li1—N137.46 (12)
C8—C7—H7A119.1O1—Li1—N2136.9 (3)
C7—C8—C3118.6 (2)C2—Li1—N237.29 (12)
C7—C8—C9118.8 (2)C1—Li1—N264.60 (16)
C3—C8—C9122.6 (2)N1—Li1—N271.92 (16)
C10—C9—C8112.3 (3)O1—Li1—Cr1132.7 (3)
C10—C9—C11110.1 (3)C2—Li1—Cr171.45 (14)
C8—C9—C11112.2 (3)C1—Li1—Cr171.71 (14)
C10—C9—H9A107.3N1—Li1—Cr147.53 (10)
C8—C9—H9A107.3N2—Li1—Cr147.31 (10)
C11—C9—H9A107.3C28B—O1—C29A70.4 (6)
C9—C10—H10A109.5C29A—O1—C28A98.4 (5)
C9—C10—H10B109.5C28B—O1—C29B101.9 (7)
H10A—C10—H10B109.5C28A—O1—C29B130.0 (6)
C9—C10—H10C109.5C28B—O1—Li1143.1 (5)
H10A—C10—H10C109.5C29A—O1—Li1146.2 (4)
H10B—C10—H10C109.5C28A—O1—Li1114.7 (4)
C9—C11—H11A109.5C29B—O1—Li1114.1 (5)
C9—C11—H11B109.5C28A—C27A—H27A109.5
H11A—C11—H11B109.5C28A—C27A—H27B109.5
C9—C11—H11C109.5H27A—C27A—H27B109.5
H11A—C11—H11C109.5C28A—C27A—H27C109.5
H11B—C11—H11C109.5H27A—C27A—H27C109.5
C4—C12—C14114.3 (3)H27B—C27A—H27C109.5
C4—C12—C13109.5 (3)O1—C28A—C27A115.7 (6)
C14—C12—C13111.8 (3)O1—C28A—H28A108.4
C4—C12—H12A107.0C27A—C28A—H28A108.4
C14—C12—H12A107.0O1—C28A—H28B108.4
C13—C12—H12A107.0C27A—C28A—H28B108.4
C12—C13—H13A109.5H28A—C28A—H28B107.4
C12—C13—H13B109.5O1—C29A—C30A92.9 (5)
H13A—C13—H13B109.5O1—C29A—H29A113.1
C12—C13—H13C109.5C30A—C29A—H29A113.1
H13A—C13—H13C109.5O1—C29A—H29B113.1
H13B—C13—H13C109.5C30A—C29A—H29B113.1
C12—C14—H14A109.5H29A—C29A—H29B110.5
C12—C14—H14B109.5C29A—C30A—H30A109.5
H14A—C14—H14B109.5C29A—C30A—H30B109.5
C12—C14—H14C109.5H30A—C30A—H30B109.5
H14A—C14—H14C109.5C29A—C30A—H30C109.5
H14B—C14—H14C109.5H30A—C30A—H30C109.5
C20—C15—C16120.0 (2)H30B—C30A—H30C109.5
C20—C15—N2120.7 (2)C28B—C27B—H27D109.5
C16—C15—N2119.3 (2)C28B—C27B—H27E109.5
C17—C16—C15118.8 (3)H27D—C27B—H27E109.5
C17—C16—C24119.0 (3)C28B—C27B—H27F109.5
C15—C16—C24122.1 (2)H27D—C27B—H27F109.5
C18—C17—C16121.2 (3)H27E—C27B—H27F109.5
C18—C17—H17A119.4O1—C28B—C27B88.8 (6)
C16—C17—H17A119.4O1—C28B—H28C113.8
C19—C18—C17119.6 (3)C27B—C28B—H28C113.8
C19—C18—H18A120.2O1—C28B—H28D113.8
C17—C18—H18A120.2C27B—C28B—H28D113.8
C18—C19—C20121.4 (3)H28C—C28B—H28D111.1
C18—C19—H19A119.3O1—C29B—C30B121.4 (7)
C20—C19—H19A119.3O1—C29B—H29C107.0
C19—C20—C15118.9 (3)C30B—C29B—H29C107.0
C19—C20—C21118.7 (3)O1—C29B—H29D107.0
C15—C20—C21122.5 (2)C30B—C29B—H29D107.0
C20—C21—C22112.8 (3)H29C—C29B—H29D106.7
C20—C21—C23111.6 (3)C29B—C30B—H30D109.5
C22—C21—C23110.7 (3)C29B—C30B—H30E109.5
C20—C21—H21A107.2H30D—C30B—H30E109.5
C22—C21—H21A107.2C29B—C30B—H30F109.5
C23—C21—H21A107.2H30D—C30B—H30F109.5
C21—C22—H22A109.5H30E—C30B—H30F109.5
C21—C22—H22B109.5C32—C31—H31A109.5
H22A—C22—H22B109.5C32—C31—H31B109.5
C21—C22—H22C109.5H31A—C31—H31B109.5
H22A—C22—H22C109.5C32—C31—H31C109.5
H22B—C22—H22C109.5H31A—C31—H31C109.5
C21—C23—H23A109.5H31B—C31—H31C109.5
C21—C23—H23B109.5C31—C32—C33111.6 (17)
H23A—C23—H23B109.5C31—C32—H32A109.3
C21—C23—H23C109.5C33—C32—H32A109.3
H23A—C23—H23C109.5C31—C32—H32B109.3
H23B—C23—H23C109.5C33—C32—H32B109.3
C26—C24—C25109.6 (4)H32A—C32—H32B108.0
C26—C24—C16110.0 (3)C32—C33—C34128.5 (18)
C25—C24—C16113.8 (3)C32—C33—H33A105.2
C26—C24—H24A107.7C34—C33—H33A105.2
C25—C24—H24A107.7C32—C33—H33B105.2
C16—C24—H24A107.7C34—C33—H33B105.2
C24—C25—H25A109.5H33A—C33—H33B105.9
C24—C25—H25B109.5C35—C34—C33111.6 (16)
H25A—C25—H25B109.5C35—C34—H34A109.3
C24—C25—H25C109.5C33—C34—H34A109.3
H25A—C25—H25C109.5C35—C34—H34B109.3
H25B—C25—H25C109.5C33—C34—H34B109.3
C24—C26—H26A109.5H34A—C34—H34B108.0
C24—C26—H26B109.5C34—C35—H35A109.5
H26A—C26—H26B109.5C34—C35—H35B109.5
C24—C26—H26C109.5H35A—C35—H35B109.5
H26A—C26—H26C109.5C34—C35—H35C109.5
H26B—C26—H26C109.5H35A—C35—H35C109.5
N2—Cr1—N179.44 (8)H35B—C35—H35C109.5
N2—Cr1—Cr1i139.85 (6)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2181).

References

  • Albahily, K., Al-Baldawi, D., Gambarotta, S., Koc, E. & Duchateau, R. (2008). Organometallics, 27, 5943–5947.
  • Baker, R. J., Jones, C. & Kloth, M. (2005). Dalton Trans. pp. 2106–2110. [PubMed]
  • Fryzuk, M. D., Leznoff, D. B., Rettig, S. J. & Thompson, R. C. (1994). Inorg. Chem.33, 5528–5534.
  • MacAdams, L. A., Buffone, G. P., Incarvito, C. D., Golen, J. A., Rheingold, A. L. & Theopold, K. H. (2003). Chem. Commun. pp. 1164–1165. [PubMed]
  • Overett, M. J., Blann, K., Bollmann, A., Dixon, J. T., Haasbroek, D., Killian, E., Maumela, H., McGuinness, D. S. & Morgan, D. H. J. (2005). J. Am. Chem. Soc.127, 10723–10730. [PubMed]
  • Peitz, S., Peulecke, N., Müller, B. H., Spannenberg, A. & Rosenthal, U. (2009). Acta Cryst. E65, m1574. [PMC free article] [PubMed]
  • Rozenel, S. S., Chomitz, W. A. & Arnold, J. (2009). Organometallics, 28, 6243–6253.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography