PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): m286.
Published online 2010 February 13. doi:  10.1107/S160053681000499X
PMCID: PMC2983493

(Acetato-κO)(2,2′-bipyridine-κ2 N,N′)trimethyl­platinum(IV) monohydrate

Abstract

In the title hydrate, [Pt(CH3)3(CH3COO)(C10H8N2)]·H2O, the PtIV atom exhibits a distorted octa­hedral coordination geometry built up by three methyl ligands in a facial arrangement, a bipyridine ligand and a monodentately bound acetate ligand. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds are observed between the water mol­ecule and the platinum complex, which link the mol­ecules into chains along the c axis.

Related literature

For ligand-substitution reactions of platinum complexes, see: Vetter et al. (2006 [triangle]); Clegg et al. (1972 [triangle]); Lindner et al. (2008 [triangle]); Steinborn & Junicke (2000 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m286-scheme1.jpg

Experimental

Crystal data

  • [Pt(CH3)3(C2H3O2)(C10H8N2)]·H2O
  • M r = 473.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m286-efi1.jpg
  • a = 10.972 (3) Å
  • b = 13.455 (3) Å
  • c = 13.768 (3) Å
  • β = 125.05 (3)°
  • V = 1663.9 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 8.44 mm−1
  • T = 293 K
  • 0.48 × 0.34 × 0.24 mm

Data collection

  • Stoe STADI-IV diffractometer
  • Absorption correction: ψ scan (X-RED32; Stoe & Cie, 1996 [triangle]) T min = 0.031, T max = 0.089
  • 4494 measured reflections
  • 2931 independent reflections
  • 2455 reflections with I > 2σ(I)
  • R int = 0.031
  • 2 standard reflections every 60 min intensity decay: random, +−5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.119
  • S = 1.06
  • 2931 reflections
  • 199 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.61 e Å−3
  • Δρmin = −1.79 e Å−3

Data collection: STADI4 (Stoe & Cie, 1996 [triangle]); cell refinement: STADI4; data reduction: STADI4; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2001 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000499X/tk2621sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000499X/tk2621Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Due to the low-spin d6 electron configuration of platinum(IV), ligand substitution reactions of their complexes may be hampered. Starting from complexes having a PtMe3 unit (Vetter et al., 2006; Clegg et al., 1972; Lindner et al., 2008), substitution reactions were found to proceed smoothly even with weak donors (Steinborn & Junicke, 2000) because the leaving ligand is additionally activated by the high trans effect exerted by the methyl ligand.

The asymmetric unit of the title hydrate comprises a neutral platinum complex, [PtMe3(OAc-κO)(bpy)], and a water molecule. The primary coordination sphere of the platinum atom is built up by three methyl ligands in facial binding fashion, a bipyridine ligand and a monodentately bound acetato ligand. As expected for Pt(IV) complexes, an octahedral coordination geometry was found, which is distorted due to the restricted bite of the 2,2'-bipyridine ligand [N1—Pt1—N2 76.7 (3)°]; the other angles between cis arranged ligands are between 85.1 (5) and 99.9 (4)°. Due to the high trans influence of the methyl ligands the Pt1—O1 bond was found to be relatively long (2.168 (6) Å) compared to those of other carboxylato platinum(IV) [median: 2.013, lower/upper quartile: 2.001/2.044 Å, 496 observations taken from the CSD, version 5.30 (Allen, 2002)]. In the crystal structure quite strong intermolecular O—H···O hydrogen bonds were found in which the water molecules act as hydrogen donors and the oxygen atoms of acetato ligand as hydrogen acceptors (Table 1). Due to these hydrogen bonds the molecules are linked in infinite chains along the c axis.

Experimental

Under anaerobic conditions [(PtMe3I)4] (50 mg, 0.03 mmol) and AgOAc (23 mg, 0.14 mmol) were stirred in acetone (10 ml) for 15 h in the absence of light. The precipitated AgI was filtered off and the solvent was reduced in vacuo to 3 ml. Then n-pentane was added and the white precipitate was collected by filtration, washed with n-pentane (2 × 1 ml) and recrystallized from chloroform.

Refinement

The water-H atoms were found in a difference map and refined with each O—H distance restrained to 0.85 (1) Å. All other H atoms were positioned geometrically and allowed to ride on the respective parent atoms with C—H = 0.93–0.96 Å [Uiso(H) = 1.2 Ueq(C)]. The maximum and minimum residual electron density peaks of 1.61 and -1.79 e Å-3, respectively, were located 1.19 Å and 1.21 Å from the Pt1 atom.

Figures

Fig. 1.
Structure of the asymmetric unit of the title hydrate [PtMe3(OAc-κO)(bpy)].H2O. Displacement ellipsoids are drawn at the 30% probability level and the H atoms are shown as small spheres of arbitrary radii.

Crystal data

[Pt(CH3)3(C2H3O2)(C10H8N2)]·H2OF(000) = 912
Mr = 473.44Dx = 1.890 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 26 reflections
a = 10.972 (3) Åθ = 15.1–25.2°
b = 13.455 (3) ŵ = 8.44 mm1
c = 13.768 (3) ÅT = 293 K
β = 125.05 (3)°Block, orange
V = 1663.9 (8) Å30.48 × 0.34 × 0.24 mm
Z = 4

Data collection

Stoe STADI-IV diffractometer2455 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
graphiteθmax = 25.0°, θmin = 2.3°
ω/2θ scansh = −13→13
Absorption correction: ψ scan (X-RED32; Stoe & Cie, 1996)k = −16→0
Tmin = 0.031, Tmax = 0.089l = −13→16
4494 measured reflections2 standard reflections every 60 min
2931 independent reflections intensity decay: random, +−5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.0676P)2 + 4.3682P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2931 reflectionsΔρmax = 1.61 e Å3
199 parametersΔρmin = −1.79 e Å3
2 restraintsExtinction correction: SHELXL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0018 (3)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0620 (12)0.7592 (8)0.1850 (9)0.072 (3)
H1−0.05350.76730.11980.087*
H3−0.16290.77140.15840.087*
H2−0.03450.69260.21500.087*
C2−0.0048 (12)0.7967 (10)0.4045 (11)0.081 (3)
H60.04120.82840.48040.097*
H50.01700.72690.41580.097*
H4−0.11060.80630.35910.097*
C3−0.0935 (11)0.9574 (8)0.2409 (10)0.069 (3)
H9−0.06031.01750.28690.083*
H8−0.17600.93040.23870.083*
H7−0.12410.97180.16160.083*
C40.3091 (10)0.7018 (7)0.3608 (9)0.058 (2)
C50.4295 (13)0.6271 (9)0.4412 (12)0.081 (4)
H110.46360.59500.39860.098*
H100.38990.57820.46670.098*
H120.51130.66080.50910.098*
C60.2491 (12)0.9787 (10)0.5540 (9)0.077 (3)
H130.20510.93580.57840.093*
C70.3426 (14)1.0548 (11)0.6304 (10)0.092 (4)
H140.35831.06380.70380.110*
C80.4096 (15)1.1153 (11)0.5953 (15)0.098 (5)
H150.47381.16520.64540.117*
C90.3823 (12)1.1025 (9)0.4859 (13)0.085 (4)
H160.42761.14370.46110.102*
C100.2869 (9)1.0279 (7)0.4123 (9)0.058 (2)
C110.2542 (10)1.0116 (7)0.2937 (9)0.057 (2)
C120.3080 (12)1.0709 (9)0.2434 (14)0.085 (4)
H170.36481.12710.28290.102*
C130.2752 (16)1.0446 (13)0.1327 (15)0.098 (5)
H180.31031.08320.09750.117*
C140.1935 (17)0.9642 (12)0.0776 (12)0.091 (4)
H190.17190.94590.00410.109*
C150.1410 (13)0.9078 (9)0.1301 (9)0.069 (3)
H200.08460.85140.09110.083*
N10.2221 (8)0.9665 (5)0.4471 (6)0.0486 (16)
N20.1687 (8)0.9318 (6)0.2344 (6)0.0525 (17)
O10.2551 (7)0.7497 (5)0.4062 (6)0.0615 (17)
O20.2727 (10)0.7105 (7)0.2563 (8)0.089 (2)
O30.4338 (10)0.7587 (8)0.6577 (9)0.088 (3)
H210.382 (12)0.767 (9)0.685 (10)0.07 (4)*
H220.379 (15)0.763 (12)0.580 (10)0.12 (6)*
Pt10.07572 (3)0.85719 (3)0.31606 (3)0.04758 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.077 (7)0.052 (6)0.069 (7)−0.020 (5)0.031 (6)0.003 (5)
C20.070 (6)0.095 (9)0.094 (8)0.007 (6)0.057 (6)0.031 (7)
C30.057 (5)0.067 (7)0.075 (7)0.015 (5)0.033 (5)0.015 (5)
C40.058 (5)0.050 (5)0.066 (6)0.001 (4)0.036 (5)0.008 (5)
C50.071 (7)0.076 (8)0.100 (9)0.017 (6)0.050 (7)0.004 (6)
C60.075 (7)0.102 (9)0.054 (6)0.018 (6)0.036 (5)−0.005 (6)
C70.079 (8)0.108 (11)0.054 (6)0.023 (8)0.018 (6)−0.027 (7)
C80.069 (8)0.082 (9)0.107 (12)−0.003 (6)0.030 (8)−0.035 (8)
C90.055 (6)0.068 (7)0.103 (10)−0.002 (5)0.029 (6)−0.020 (7)
C100.043 (4)0.049 (5)0.073 (6)0.009 (4)0.027 (4)−0.003 (4)
C110.055 (5)0.055 (6)0.072 (6)0.018 (4)0.042 (5)0.017 (5)
C120.066 (6)0.070 (7)0.134 (12)0.007 (6)0.067 (7)0.031 (8)
C130.095 (9)0.120 (13)0.116 (12)0.016 (8)0.083 (9)0.047 (10)
C140.106 (9)0.121 (12)0.079 (8)0.039 (9)0.072 (8)0.037 (8)
C150.088 (7)0.078 (7)0.058 (6)0.014 (6)0.051 (6)0.003 (5)
N10.048 (4)0.051 (4)0.048 (4)0.009 (3)0.029 (3)0.006 (3)
N20.056 (4)0.058 (4)0.052 (4)0.008 (4)0.036 (3)0.009 (4)
O10.063 (4)0.062 (4)0.055 (4)0.014 (3)0.032 (3)0.006 (3)
O20.108 (6)0.095 (6)0.084 (6)0.025 (5)0.067 (5)0.014 (5)
O30.070 (5)0.118 (8)0.068 (5)−0.001 (5)0.035 (5)0.014 (5)
Pt10.0491 (2)0.0487 (3)0.0473 (3)0.00074 (14)0.02902 (18)0.00514 (14)

Geometric parameters (Å, °)

C1—Pt12.036 (10)C7—H140.9300
C1—H10.9600C8—C91.37 (2)
C1—H30.9600C8—H150.9300
C1—H20.9600C9—C101.382 (15)
C2—Pt12.041 (11)C9—H160.9300
C2—H60.9600C10—N11.345 (13)
C2—H50.9600C10—C111.474 (15)
C2—H40.9600C11—N21.349 (13)
C3—Pt12.032 (9)C11—C121.391 (15)
C3—H90.9600C12—C131.40 (2)
C3—H80.9600C12—H170.9300
C3—H70.9600C13—C141.33 (2)
C4—O21.258 (13)C13—H180.9300
C4—O11.259 (12)C14—C151.381 (17)
C4—C51.518 (14)C14—H190.9300
C5—H110.9600C15—N21.326 (12)
C5—H100.9600C15—H200.9300
C5—H120.9600N1—Pt12.161 (7)
C6—N11.335 (13)N2—Pt12.152 (7)
C6—C71.403 (18)O1—Pt12.168 (6)
C6—H130.9300O3—H210.85 (9)
C7—C81.36 (2)O3—H220.88 (11)
Pt1—C1—H1109.5N1—C10—C11117.4 (8)
Pt1—C1—H3109.5C9—C10—C11121.4 (11)
H1—C1—H3109.5N2—C11—C12120.2 (11)
Pt1—C1—H2109.5N2—C11—C10115.6 (8)
H1—C1—H2109.5C12—C11—C10124.2 (11)
H3—C1—H2109.5C11—C12—C13118.7 (13)
Pt1—C2—H6109.5C11—C12—H17120.6
Pt1—C2—H5109.5C13—C12—H17120.6
H6—C2—H5109.5C14—C13—C12119.7 (12)
Pt1—C2—H4109.5C14—C13—H18120.2
H6—C2—H4109.5C12—C13—H18120.2
H5—C2—H4109.5C13—C14—C15119.7 (13)
Pt1—C3—H9109.5C13—C14—H19120.1
Pt1—C3—H8109.5C15—C14—H19120.1
H9—C3—H8109.5N2—C15—C14121.9 (12)
Pt1—C3—H7109.5N2—C15—H20119.1
H9—C3—H7109.5C14—C15—H20119.1
H8—C3—H7109.5C6—N1—C10119.3 (9)
O2—C4—O1126.2 (9)C6—N1—Pt1126.3 (8)
O2—C4—C5117.9 (10)C10—N1—Pt1114.4 (6)
O1—C4—C5116.0 (10)C15—N2—C11119.8 (9)
C4—C5—H11109.5C15—N2—Pt1124.8 (8)
C4—C5—H10109.5C11—N2—Pt1115.4 (6)
H11—C5—H10109.5C4—O1—Pt1126.0 (6)
C4—C5—H12109.5H21—O3—H22112 (10)
H11—C5—H12109.5C3—Pt1—C189.0 (5)
H10—C5—H12109.5C3—Pt1—C289.2 (5)
N1—C6—C7121.4 (13)C1—Pt1—C285.1 (5)
N1—C6—H13119.3C3—Pt1—N289.6 (4)
C7—C6—H13119.3C1—Pt1—N299.9 (4)
C8—C7—C6118.8 (13)C2—Pt1—N2174.8 (5)
C8—C7—H14120.6C3—Pt1—N189.8 (4)
C6—C7—H14120.6C1—Pt1—N1176.5 (4)
C7—C8—C9119.7 (13)C2—Pt1—N198.2 (4)
C7—C8—H15120.1N2—Pt1—N176.7 (3)
C9—C8—H15120.1C3—Pt1—O1176.2 (4)
C8—C9—C10119.6 (14)C1—Pt1—O192.5 (4)
C8—C9—H16120.2C2—Pt1—O187.4 (4)
C10—C9—H16120.2N2—Pt1—O193.6 (3)
N1—C10—C9121.2 (11)N1—Pt1—O188.9 (3)
N1—C6—C7—C8−1.9 (18)C12—C11—N2—Pt1−173.8 (7)
C6—C7—C8—C92(2)C10—C11—N2—Pt17.6 (9)
C7—C8—C9—C10−0.1 (19)O2—C4—O1—Pt13.0 (15)
C8—C9—C10—N1−1.1 (16)C5—C4—O1—Pt1−177.2 (7)
C8—C9—C10—C11179.9 (10)C15—N2—Pt1—C3−92.8 (8)
N1—C10—C11—N2−4.0 (12)C11—N2—Pt1—C383.5 (7)
C9—C10—C11—N2175.0 (9)C15—N2—Pt1—C1−3.8 (9)
N1—C10—C11—C12177.5 (9)C11—N2—Pt1—C1172.4 (6)
C9—C10—C11—C12−3.5 (14)C15—N2—Pt1—N1177.3 (8)
N2—C11—C12—C13−1.7 (15)C11—N2—Pt1—N1−6.4 (6)
C10—C11—C12—C13176.7 (10)C15—N2—Pt1—O189.3 (8)
C11—C12—C13—C140.2 (19)C11—N2—Pt1—O1−94.5 (6)
C12—C13—C14—C150(2)C6—N1—Pt1—C393.0 (9)
C13—C14—C15—N20.5 (18)C10—N1—Pt1—C3−85.4 (7)
C7—C6—N1—C100.7 (15)C6—N1—Pt1—C23.8 (9)
C7—C6—N1—Pt1−177.7 (8)C10—N1—Pt1—C2−174.6 (6)
C9—C10—N1—C60.8 (13)C6—N1—Pt1—N2−177.4 (8)
C11—C10—N1—C6179.8 (8)C10—N1—Pt1—N24.2 (6)
C9—C10—N1—Pt1179.3 (7)C6—N1—Pt1—O1−83.4 (8)
C11—C10—N1—Pt1−1.7 (10)C10—N1—Pt1—O198.2 (6)
C14—C15—N2—C11−2.0 (15)C4—O1—Pt1—C153.9 (8)
C14—C15—N2—Pt1174.0 (8)C4—O1—Pt1—C2138.9 (9)
C12—C11—N2—C152.6 (13)C4—O1—Pt1—N2−46.2 (8)
C10—C11—N2—C15−176.0 (8)C4—O1—Pt1—N1−122.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H22···O10.88 (11)1.96 (11)2.836 (12)172 (15)
O3—H21···O2i0.85 (9)1.96 (10)2.810 (14)177 (11)

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2621).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brandenburg, K. (2001). DIAMOND Crystal Impact GbR. Bonn, Germany.
  • Clegg, D. E., Hall, J. R. & Swile, G. A. (1972). J. Organomet. Chem.38, 403–420.
  • Lindner, R., Kaluđerović, G. N., Paschke, R., Wagner, C. & Steinborn, D. (2008). Polyhedron, 27, 914–922.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steinborn, D. & Junicke, H. (2000). Chem. Rev.100, 4283–4317. [PubMed]
  • Stoe & Cie (1996). STADI4 and X-RED32. Stoe & Cie GmbH. Darmstadt, Germany.
  • Vetter, C., Wagner, C., Schmidt, J. & Steinborn, D. (2006). Inorg. Chim. Acta, 359, 4326–4334.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography