PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 March 1; 66(Pt 3): o687.
Published online 2010 February 24. doi:  10.1107/S1600536810006483
PMCID: PMC2983491

3-Benzamido-1-benzoyl-1H-pyrrol-2(5H)-one

Abstract

In the title compound, C18H14N2O3, one of the phenyl rings is almost coplanar with the pyrrole ring [dihedral angle = 2.56 (14)°], whereas the other one is tilted by 63.01 (6)° with respect to the pyrrole ring. Since the NH group is shielded from possible acceptors, this group is not involved in hydrogen bonding.

Related literature

For the synthesis of 1,5-dihydro-2H-pyrrol-2-ones, see: Gao et al. (1997 [triangle]); Alizadeh et al. (2006 [triangle]); Nedolya et al. (2002 [triangle]); Mušič et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o687-scheme1.jpg

Experimental

Crystal data

  • C18H14N2O3
  • M r = 306.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o687-efi1.jpg
  • a = 20.966 (2) Å
  • b = 5.8891 (7) Å
  • c = 12.329 (1) Å
  • β = 95.908 (8)°
  • V = 1514.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.58 × 0.36 × 0.09 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 13450 measured reflections
  • 3648 independent reflections
  • 2119 reflections with I > 2σ(I)
  • R int = 0.056
  • 3 standard reflections every 333.3 min intensity decay: 1.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.132
  • S = 1.00
  • 3648 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: the XRAY76 System (Stewart et al., 1976 [triangle]); data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006483/bt5197sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006483/bt5197Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia (grants P1–0175 and MR-29397).

supplementary crystallographic information

Comment

1,5-dihydro-2H-pyrrol-2-ones comprise a family of lactams which are found as substructures in several natural products with promising pharmalogical properties. Several reports on synthesis of substituted 1,5-dihydro-2H-pyrrol-2-ones exist and these compounds can be prepared via different synthetic pathways (e.g. Gao et al., 1997; Alizadeh et al., 2006; Nedolya et al., 2002), Mušič et al. (1998). The asymmetry unit of the title compound with atom labelling scheme can be seen in Fig. 1.

Experimental

The title compound was prepared according to the procedure by Mušič et al. (1998). The crystals, suitable for X-ray structure analysis, were obtained by slow crystallization from the mixture of acetonitrile and hexane at room temperature.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms [C—H = 0.97 for methylene and 0.93 Å for aromatic hydrogens, respectively, N—H = 0.86 Å and Uiso(H) = 1.2 times Ueq(C, N)].

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.

Crystal data

C18H14N2O3F(000) = 640
Mr = 306.31Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 75 reflections
a = 20.966 (2) Åθ = 8.0–15.3°
b = 5.8891 (7) ŵ = 0.09 mm1
c = 12.329 (1) ÅT = 293 K
β = 95.908 (8)°Plate, pale yellow
V = 1514.2 (3) Å30.58 × 0.36 × 0.09 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.056
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.0°
graphiteh = −27→27
ω/2θ scans [width (0.85 + 0.3tanθ)]k = −7→7
13450 measured reflectionsl = −16→14
3648 independent reflections3 standard reflections every 333.3 min
2119 reflections with I > 2σ(I) intensity decay: 1.1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.132w = 1/[σ2(Fo2) + (0.0676P)2 + 0.1617P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3648 reflectionsΔρmax = 0.16 e Å3
209 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELX97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.80491 (6)0.1771 (2)0.90089 (10)0.0492 (3)
N20.69375 (7)0.6347 (2)0.88815 (11)0.0554 (4)
H20.69850.68200.82350.066*
O10.77372 (6)0.4192 (2)0.75402 (9)0.0632 (4)
O20.85617 (8)−0.1579 (2)0.90309 (12)0.0846 (5)
O30.64221 (7)0.6962 (3)1.03607 (10)0.0784 (4)
C10.78338 (8)0.1439 (3)1.00943 (12)0.0534 (4)
H1A0.81900.15481.06600.064*
H1B0.7627−0.00241.01470.064*
C20.73736 (8)0.3319 (3)1.01751 (13)0.0550 (4)
H2A0.71620.36271.07850.066*
C30.73060 (7)0.4501 (3)0.92579 (12)0.0483 (4)
C40.77164 (7)0.3562 (3)0.84693 (12)0.0472 (4)
C50.84667 (8)0.0250 (3)0.85911 (13)0.0534 (4)
C60.88045 (7)0.0966 (3)0.76467 (12)0.0453 (4)
C70.88460 (8)−0.0552 (3)0.67966 (14)0.0549 (4)
H70.8640−0.19500.68000.066*
C80.91946 (9)0.0018 (3)0.59465 (14)0.0634 (5)
H80.9210−0.09750.53630.076*
C90.95206 (9)0.2049 (3)0.59581 (15)0.0619 (5)
H90.97630.24080.53910.074*
C100.94882 (8)0.3549 (3)0.68073 (14)0.0555 (4)
H100.97120.49130.68170.067*
C110.91240 (7)0.3029 (3)0.76453 (12)0.0487 (4)
H110.90930.40610.82080.058*
C120.65088 (8)0.7482 (3)0.94360 (13)0.0528 (4)
C130.61696 (8)0.9416 (3)0.88463 (13)0.0512 (4)
C140.57527 (10)1.0680 (4)0.93989 (16)0.0712 (6)
H140.56781.02681.01030.085*
C150.54448 (12)1.2550 (4)0.8915 (2)0.0884 (7)
H150.51661.33970.92940.106*
C160.55488 (11)1.3153 (4)0.7884 (2)0.0860 (7)
H160.53471.44250.75610.103*
C170.59485 (12)1.1893 (5)0.7325 (2)0.0956 (8)
H170.60151.22990.66160.115*
C180.62549 (10)1.0025 (4)0.77981 (16)0.0770 (6)
H180.65230.91650.74030.092*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0550 (8)0.0540 (8)0.0394 (7)0.0026 (7)0.0086 (6)0.0046 (6)
N20.0570 (8)0.0713 (10)0.0406 (7)0.0103 (7)0.0184 (6)0.0029 (7)
O10.0735 (8)0.0808 (9)0.0375 (6)0.0250 (7)0.0167 (5)0.0084 (6)
O20.1141 (12)0.0581 (8)0.0851 (10)0.0181 (8)0.0264 (9)0.0236 (7)
O30.0878 (10)0.1034 (11)0.0492 (7)0.0198 (8)0.0315 (7)0.0071 (7)
C10.0575 (10)0.0645 (11)0.0387 (8)−0.0111 (8)0.0071 (7)0.0064 (8)
C20.0519 (9)0.0741 (11)0.0409 (8)−0.0055 (9)0.0139 (7)0.0004 (8)
C30.0457 (8)0.0620 (11)0.0385 (8)−0.0033 (8)0.0105 (6)−0.0017 (7)
C40.0489 (9)0.0573 (10)0.0361 (8)0.0018 (8)0.0075 (6)−0.0009 (7)
C50.0589 (10)0.0492 (10)0.0515 (9)0.0025 (8)0.0031 (8)0.0027 (8)
C60.0466 (8)0.0432 (8)0.0457 (8)0.0093 (7)0.0027 (6)−0.0018 (7)
C70.0574 (10)0.0444 (9)0.0625 (11)0.0076 (8)0.0048 (8)−0.0092 (8)
C80.0682 (12)0.0659 (12)0.0566 (11)0.0189 (10)0.0093 (9)−0.0179 (9)
C90.0539 (10)0.0758 (13)0.0584 (11)0.0125 (9)0.0168 (8)0.0003 (9)
C100.0486 (9)0.0561 (10)0.0624 (10)−0.0002 (8)0.0089 (8)0.0008 (8)
C110.0514 (9)0.0466 (9)0.0475 (9)0.0047 (7)0.0026 (7)−0.0060 (7)
C120.0484 (9)0.0688 (11)0.0432 (9)−0.0040 (8)0.0152 (7)−0.0079 (8)
C130.0446 (8)0.0621 (10)0.0479 (9)−0.0041 (8)0.0098 (7)−0.0112 (8)
C140.0744 (13)0.0822 (14)0.0590 (11)0.0110 (11)0.0160 (9)−0.0205 (10)
C150.0897 (17)0.0788 (15)0.0968 (17)0.0231 (13)0.0096 (13)−0.0297 (13)
C160.0808 (16)0.0710 (14)0.1039 (19)0.0063 (12)−0.0011 (13)0.0066 (13)
C170.0862 (16)0.116 (2)0.0873 (16)0.0289 (15)0.0238 (13)0.0341 (15)
C180.0704 (12)0.1031 (16)0.0608 (11)0.0271 (12)0.0233 (10)0.0130 (11)

Geometric parameters (Å, °)

N1—C51.388 (2)C8—C91.377 (3)
N1—C41.395 (2)C8—H80.9300
N1—C11.4687 (19)C9—C101.377 (2)
N2—C121.360 (2)C9—H90.9300
N2—C31.385 (2)C10—C111.381 (2)
N2—H20.8600C10—H100.9300
O1—C41.2091 (18)C11—H110.9300
O2—C51.213 (2)C12—C131.492 (2)
O3—C121.2121 (19)C13—C181.370 (2)
C1—C21.479 (3)C13—C141.380 (2)
C1—H1A0.9700C14—C151.381 (3)
C1—H1B0.9700C14—H140.9300
C2—C31.323 (2)C15—C161.358 (3)
C2—H2A0.9300C15—H150.9300
C3—C41.471 (2)C16—C171.359 (3)
C5—C61.485 (2)C16—H160.9300
C6—C111.387 (2)C17—C181.373 (3)
C6—C71.387 (2)C17—H170.9300
C7—C81.379 (2)C18—H180.9300
C7—H70.9300
C5—N1—C4127.91 (13)C7—C8—H8119.8
C5—N1—C1121.13 (13)C8—C9—C10120.13 (17)
C4—N1—C1110.46 (13)C8—C9—H9119.9
C12—N2—C3126.31 (14)C10—C9—H9119.9
C12—N2—H2116.8C9—C10—C11120.07 (17)
C3—N2—H2116.8C9—C10—H10120.0
N1—C1—C2103.04 (13)C11—C10—H10120.0
N1—C1—H1A111.2C10—C11—C6119.96 (15)
C2—C1—H1A111.2C10—C11—H11120.0
N1—C1—H1B111.2C6—C11—H11120.0
C2—C1—H1B111.2O3—C12—N2121.29 (17)
H1A—C1—H1B109.1O3—C12—C13122.77 (15)
C3—C2—C1110.47 (14)N2—C12—C13115.92 (14)
C3—C2—H2A124.8C18—C13—C14118.38 (18)
C1—C2—H2A124.8C18—C13—C12123.87 (16)
C2—C3—N2134.92 (15)C14—C13—C12117.74 (16)
C2—C3—C4110.40 (15)C15—C14—C13120.6 (2)
N2—C3—C4114.67 (13)C15—C14—H14119.7
O1—C4—N1128.21 (15)C13—C14—H14119.7
O1—C4—C3126.27 (15)C16—C15—C14120.0 (2)
N1—C4—C3105.48 (13)C16—C15—H15120.0
O2—C5—N1119.19 (16)C14—C15—H15120.0
O2—C5—C6122.21 (16)C15—C16—C17119.9 (2)
N1—C5—C6118.54 (14)C15—C16—H16120.0
C11—C6—C7119.70 (15)C17—C16—H16120.0
C11—C6—C5121.26 (14)C16—C17—C18120.5 (2)
C7—C6—C5118.79 (15)C16—C17—H17119.7
C8—C7—C6119.78 (17)C18—C17—H17119.7
C8—C7—H7120.1C13—C18—C17120.6 (2)
C6—C7—H7120.1C13—C18—H18119.7
C9—C8—C7120.31 (16)C17—C18—H18119.7
C9—C8—H8119.8
C5—N1—C1—C2−176.46 (15)C11—C6—C7—C8−1.2 (2)
C4—N1—C1—C2−3.92 (17)C5—C6—C7—C8−175.60 (15)
N1—C1—C2—C32.68 (19)C6—C7—C8—C92.4 (3)
C1—C2—C3—N2178.14 (18)C7—C8—C9—C10−1.5 (3)
C1—C2—C3—C4−0.6 (2)C8—C9—C10—C11−0.6 (3)
C12—N2—C3—C2−0.5 (3)C9—C10—C11—C61.8 (2)
C12—N2—C3—C4178.20 (15)C7—C6—C11—C10−0.9 (2)
C5—N1—C4—O1−2.2 (3)C5—C6—C11—C10173.38 (15)
C1—N1—C4—O1−174.11 (17)C3—N2—C12—O31.6 (3)
C5—N1—C4—C3175.56 (15)C3—N2—C12—C13−179.80 (15)
C1—N1—C4—C33.67 (17)O3—C12—C13—C18−179.38 (19)
C2—C3—C4—O1175.90 (17)N2—C12—C13—C182.0 (3)
N2—C3—C4—O1−3.1 (3)O3—C12—C13—C141.6 (3)
C2—C3—C4—N1−1.93 (19)N2—C12—C13—C14−177.04 (16)
N2—C3—C4—N1179.08 (13)C18—C13—C14—C15−1.9 (3)
C4—N1—C5—O2−157.39 (17)C12—C13—C14—C15177.23 (18)
C1—N1—C5—O213.7 (2)C13—C14—C15—C160.4 (3)
C4—N1—C5—C625.3 (2)C14—C15—C16—C171.0 (4)
C1—N1—C5—C6−163.60 (14)C15—C16—C17—C18−0.7 (4)
O2—C5—C6—C11−127.91 (19)C14—C13—C18—C172.1 (3)
N1—C5—C6—C1149.3 (2)C12—C13—C18—C17−176.9 (2)
O2—C5—C6—C746.4 (2)C16—C17—C18—C13−0.9 (4)
N1—C5—C6—C7−136.36 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5197).

References

  • Alizadeh, A., Movahedi, F., Masrouri, H. & Zhu, L. G. (2006). Synthesis, pp. 3431–3436.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gao, Y., Shirai, M. & Sato, F. (1997). Tetrahedron Lett.38, 6849–6852.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Mušič, I., Golobič, A. & Verček, B. (1998). Heterocycles, 48, 353–358.
  • Nedolya, N. A., Brandsma, L. & Tolmachev, S. V. (2002). Russ. J. Org. Chem.38, 948–949.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stewart, R. F., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. & Flack, H. (1976). The XRAY76 System. Technical Report TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography