PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2556.
Published online 2010 September 11. doi:  10.1107/S160053681003535X
PMCID: PMC2983432

2-Phenyl­anilinium dihydrogen phosphate

Abstract

In the crystal structure of the title compound, C12H12N+·H2PO4 , the dihydrogen phosphate anions and the 2-phenyl­anilinium cations are associated via O—H(...)O and N—H(...)O hydrogen bonds so as to build inorganic layers around the x = 1/2 plane. The organic entities are anchored between these layers through C—H(...)O hydrogen bonds, forming a three-dimensional infinite network. The dihedral angle between the aromatic rings is 44.7 (4)°.

Related literature

For related inorganic-organic materials, see: Mrad et al. (2006 [triangle]); Oueslati et al. (2009 [triangle]). For the organization of inorganic networks, see: Baoub & Jouini (1998 [triangle]). For the geometry around the P atom, see: Kefi et al. (2007 [triangle]); Oueslati & Ben Nasr (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2556-scheme1.jpg

Experimental

Crystal data

  • C12H12N+·H2PO4
  • M r = 267.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2556-efi1.jpg
  • a = 15.4580 (4) Å
  • b = 4.7422 (1) Å
  • c = 18.4765 (6) Å
  • β = 112.008 (1)°
  • V = 1255.72 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 295 K
  • 0.26 × 0.23 × 0.11 mm

Data collection

  • Nonius KappaCCD diffractometer
  • 11492 measured reflections
  • 3628 independent reflections
  • 2106 reflections with I > 2σ(I)
  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.137
  • S = 1.04
  • 3628 reflections
  • 183 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1997 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003535X/bg2358sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003535X/bg2358Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

During the systematic investigation of interaction between monophosphoric acid with organic molecules, numerous structures of monophosphates with organic cations have been described (Oueslati et al., 2009; Mrad et al., 2OO6). These structures are based on various one-, two-, or three-dimensional inorganic network depending on the nature and the shape of the organic molecule (Baoub and Jouini, 1998). Hydrogen bonds take part to the stability and the cohesion of the corresponding compounds. We report, in this work, the chemical preparation and the structural investigation of a new 2-Phenylanilinium dihydrogenomonophosphate. As shown in Fig. 1, the crystal structure of the title compound (I), consists of one phosphate anion and one organic cation. The H2PO4- entities and the NH3+ ammonium catins have a layered organization around x = 1/2 plane (Fig. 2). Fig. 3 represents a projection of such layer. It shows that the H2PO4- groups are connected by strong hydrogen bonds to form infinite chains in the b-direction of composition (H2PO4-)nn-. Each chain is interconnected, on one hand, to another one by means of O—H···O hydrogen bonds and, on the other hand, to NH3+ groups via N—H···O hydrogen bonds as to build an inorganic layer. The organic groups are anchored onto successive inorganic layers throw C—H···O hydrogen bonds (Fig. 2).

With regards to the H2PO4- geometrical features, we remark the existence of two types of P···O distances. The longest ones (1.557 (2) and 1.595 (2) Å) correspond to P—OH groups, the shortest ones (1.494 (2) and 1.504 (2) Å) corresponding to classical P···O bonds. The average of the P···O distances and the O—P—O angles are 1.537 (2) Å and 109.35 (10)°, respectively. They agree perfectly with that generally observed for anions in other phosphates (Kefi et al., 2OO7). The O—P—O angles spread in the range 104.87 (10) and 115.19 (10)°. This distortion from the ideal tetrahedral value has been regularly noted in other organic phosphates (Oueslati and Ben Nasr, 2006). The larger mean value of 112.70 (10)°, with a range of 110.74 (11)–115.19 (10)°, corresponds to the O—P—O angle. The smaller one 106.00 (10)°, with a range of 104.88 (10)–107.89 (10)°, is related to the HO—P—OH angle. All these geometrical parameters are in full agreement with those observed in such anions in other organic dihydrogenomonophosphates (Oueslati and Ben Nasr, 2006). However, the P—P distance between H2PO4 tetrahedra: 4.742 (2) ° is slightly shorter than that observed in NH3(CH2)4NH3HPO4.H2O (Baoub and Jouini, 1998) [5.575 (1) °], which is probably due to the presence of two acidic hydrogen atoms on the PO4 leading to the formation of strong hydrogen bonds. Furthermore, the short P—P distance is in favour of the general formation of [H2PO4-]nn- polyanions in the crystal structure, but not to the individualization of the H2PO4- groups (Oueslati and Ben Nasr, 2006).

Experimental

Crystals of the title compound have been prepared in a Petri dish by adding 50 mmol of concentrated orthophosphoric acid (Fluka, 85%, d = 1.7) to 25 mmol of 2-phenylaniline (Acros) dissolved in ethanol. After agitation, the resulting solution has been slowly evaporated at room temperature until the formation of single crystals suitable for X-ray structure analysis and remained stable under normal conditions of temperature and humidity.

Refinement

Hydrogen atoms bound to N and O atoms were located in the Difference Fourier map and refined with restraints on the bond length [0.87 (2) and 0.84 (2) for N—H and O—H, respectively] ; the remaining H atoms were given calculated positions (C–H: 0.93Å) . In all cases riding displacement factors were used, with a multiplication factor of 1.2.

Figures

Fig. 1.
A view of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.
Fig. 2.
The packing diagram of the compound viewed down the b axis. PO4 is given in the tetrahedral representation. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The packing diagram of the compound viewed down the a axis. PO4 is given in the tetrahedral representation. Hydrogen bonds are shown as dashed lines.

Crystal data

C12H12N+·H2PO4F(000) = 560
Mr = 267.21Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11492 reflections
a = 15.4580 (4) Åθ = 5.0–30.0°
b = 4.7422 (1) ŵ = 0.23 mm1
c = 18.4765 (6) ÅT = 295 K
β = 112.008 (1)°Plate, colourless
V = 1255.72 (6) Å30.26 × 0.23 × 0.11 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2106 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
graphiteθmax = 30.2°, θmin = 5.3°
[var phi] and ω scansh = −21→21
11492 measured reflectionsk = −6→6
3628 independent reflectionsl = −25→24

Refinement

Refinement on F25 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.054w = 1/[σ2(Fo2) + (0.0566P)2 + 0.2547P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.26 e Å3
3628 reflectionsΔρmin = −0.36 e Å3
183 parameters

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.50007 (4)0.34843 (11)0.37476 (3)0.03014 (17)
O10.59397 (10)0.4449 (3)0.42905 (9)0.0387 (4)
O20.42429 (11)0.5807 (3)0.36048 (11)0.0442 (4)
H130.441 (2)0.751 (4)0.3706 (19)0.078 (11)*
O30.46470 (12)0.0835 (3)0.39908 (10)0.0391 (4)
O40.50106 (13)0.2818 (4)0.29045 (10)0.0447 (4)
H140.506 (3)0.425 (6)0.269 (2)0.098 (14)*
N10.34451 (13)0.0832 (4)0.48207 (12)0.0338 (4)
H10.3538 (18)−0.079 (4)0.5088 (15)0.049 (8)*
H20.3783 (15)0.083 (5)0.4503 (13)0.039 (7)*
H30.3664 (19)0.231 (5)0.5148 (15)0.058 (8)*
C10.24645 (15)0.1339 (5)0.43239 (13)0.0352 (5)
C20.22923 (18)0.2634 (6)0.36147 (15)0.0492 (6)
H40.27880.3160.34740.059*
C30.13871 (19)0.3153 (7)0.31125 (16)0.0575 (7)
H50.12690.4020.26330.069*
C40.06575 (18)0.2368 (7)0.33299 (16)0.0548 (7)
H60.00450.26970.29950.066*
C50.08346 (17)0.1110 (6)0.40363 (15)0.0472 (6)
H70.03350.05990.41730.057*
C60.17466 (16)0.0565 (5)0.45629 (14)0.0378 (5)
C70.18893 (16)−0.0716 (5)0.53375 (14)0.0400 (5)
C80.25463 (17)0.0340 (6)0.60238 (14)0.0458 (6)
H80.29270.18330.60050.055*
C90.2639 (2)−0.0821 (7)0.67409 (16)0.0601 (8)
H90.3089−0.01270.71980.072*
C100.2068 (2)−0.2983 (7)0.67742 (19)0.0642 (8)
H100.2129−0.37510.72540.077*
C110.1406 (2)−0.4018 (7)0.6100 (2)0.0659 (9)
H110.1015−0.5470.61260.079*
C120.13193 (19)−0.2921 (6)0.53876 (17)0.0508 (6)
H120.0875−0.36590.49340.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0349 (3)0.0253 (3)0.0303 (3)0.0000 (2)0.0123 (2)−0.0027 (2)
O10.0337 (8)0.0377 (8)0.0398 (9)−0.0021 (6)0.0080 (7)−0.0056 (7)
O20.0355 (9)0.0292 (9)0.0612 (12)0.0030 (7)0.0104 (8)−0.0065 (7)
O30.0502 (9)0.0277 (7)0.0448 (10)−0.0024 (7)0.0239 (8)−0.0012 (6)
O40.0651 (11)0.0398 (9)0.0326 (9)−0.0012 (8)0.0223 (8)−0.0027 (7)
N10.0291 (9)0.0379 (11)0.0336 (11)−0.0007 (8)0.0108 (8)−0.0024 (8)
C10.0307 (10)0.0397 (12)0.0310 (11)0.0007 (9)0.0068 (9)−0.0052 (9)
C20.0394 (13)0.0655 (17)0.0417 (15)−0.0008 (12)0.0141 (11)0.0059 (12)
C30.0472 (15)0.079 (2)0.0399 (15)0.0082 (14)0.0085 (12)0.0140 (14)
C40.0349 (13)0.0761 (18)0.0423 (15)0.0040 (13)0.0016 (11)0.0018 (13)
C50.0307 (12)0.0621 (16)0.0456 (14)−0.0016 (11)0.0106 (10)−0.0032 (12)
C60.0342 (11)0.0428 (12)0.0358 (12)−0.0021 (10)0.0122 (10)−0.0060 (10)
C70.0359 (12)0.0459 (13)0.0411 (13)0.0055 (10)0.0175 (10)−0.0019 (10)
C80.0399 (12)0.0604 (15)0.0390 (14)0.0013 (12)0.0169 (11)−0.0035 (12)
C90.0544 (16)0.088 (2)0.0389 (15)0.0158 (15)0.0186 (13)0.0020 (14)
C100.071 (2)0.077 (2)0.0562 (19)0.0182 (17)0.0371 (16)0.0226 (16)
C110.070 (2)0.0591 (18)0.084 (2)0.0060 (15)0.0460 (19)0.0164 (16)
C120.0467 (14)0.0524 (15)0.0586 (17)−0.0005 (12)0.0258 (13)−0.0008 (13)

Geometric parameters (Å, °)

P1—O11.4937 (16)C4—C51.366 (4)
P1—O31.5045 (15)C4—H60.93
P1—O21.5566 (16)C5—C61.405 (3)
P1—O41.5952 (17)C5—H70.93
O2—H130.844 (18)C6—C71.493 (3)
O4—H140.807 (18)C7—C81.388 (3)
N1—C11.468 (3)C7—C121.393 (4)
N1—H10.895 (17)C8—C91.392 (4)
N1—H20.921 (16)C8—H80.93
N1—H30.905 (17)C9—C101.368 (4)
C1—C21.380 (3)C9—H90.93
C1—C61.389 (3)C10—C111.372 (5)
C2—C31.381 (4)C10—H100.93
C2—H40.93C11—C121.375 (4)
C3—C41.383 (4)C11—H110.93
C3—H50.93C12—H120.93
O1—P1—O3115.19 (10)C3—C4—H6119.9
O1—P1—O2112.16 (9)C4—C5—C6122.1 (2)
O3—P1—O2107.87 (10)C4—C5—H7118.9
O1—P1—O4110.73 (10)C6—C5—H7118.9
O3—P1—O4105.30 (9)C1—C6—C5116.4 (2)
O2—P1—O4104.88 (10)C1—C6—C7124.3 (2)
P1—O2—H13120 (2)C5—C6—C7119.2 (2)
P1—O4—H14111 (3)C8—C7—C12118.4 (2)
C1—N1—H1113.6 (18)C8—C7—C6121.6 (2)
C1—N1—H2107.5 (15)C12—C7—C6120.0 (2)
H1—N1—H2110 (2)C9—C8—C7120.4 (3)
C1—N1—H3109.3 (18)C9—C8—H8119.8
H1—N1—H3111 (2)C7—C8—H8119.8
H2—N1—H3105 (2)C10—C9—C8120.1 (3)
C2—C1—C6121.8 (2)C10—C9—H9120
C2—C1—N1117.0 (2)C8—C9—H9120
C6—C1—N1121.3 (2)C11—C10—C9120.1 (3)
C1—C2—C3120.2 (2)C11—C10—H10120
C1—C2—H4119.9C9—C10—H10120
C3—C2—H4119.9C10—C11—C12120.4 (3)
C2—C3—C4119.2 (3)C10—C11—H11119.8
C2—C3—H5120.4C12—C11—H11119.8
C4—C3—H5120.4C11—C12—C7120.7 (3)
C5—C4—C3120.1 (2)C11—C12—H12119.7
C5—C4—H6119.9C7—C12—H12119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)2.07 (2)2.950 (2)167 (3)
N1—H2···O30.92 (3)1.90 (3)2.818 (3)171 (2)
N1—H3···O1ii0.90 (3)1.83 (2)2.727 (2)173 (2)
O2—H13···O3iii0.85 (2)1.66 (2)2.500 (2)171 (3)
O4—H14···O4iv0.80 (3)2.00 (3)2.797 (3)172 (5)
C2—H4···O20.932.513.376 (3)156
C9—H9···O2v0.932.563.407 (3)151

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+1/2; (v) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2358).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Baoub, L. & Jouini, A. (1998). J. Solid State Chem.141, 343–351.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull.42, 404–412.
  • Mrad, M. L., Ben Nasr, C. & Rzaigui, M. (2006). Mater. Res. Bull.41, 1287–1294.
  • Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Oueslati, A. & Ben Nasr, C. (2006). Anal. Sci. X-ray Struct. Online, 22, 225–226.
  • Oueslati, J., Kefi, R., Lefebvre, F., Ben Nasr, C. & Rzaigui, M. (2009). Phosphorus Sulfur Silicon, 184, 499–513.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography