PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2651.
Published online 2010 September 30. doi:  10.1107/S1600536810037839
PMCID: PMC2983429

1-[3-(4-Chloro­phen­yl)-6-methyl-1,6-di­hydro-1,2,4,5-tetra­zin-1-yl]ethanone

Abstract

In the title compound, C11H11ClN4O, the tetra­zine ring adopts a non-symmetrical boat conformation. The crystal packing exhibits relatively short inter­molecular C(...)N contacts of 3.118 (3) Å.

Related literature

For related structures, see: Hu et al. (2004 [triangle], 2005 [triangle]); Jennison et al. (1986 [triangle]); Stam et al. (1982 [triangle]); Xu et al. (2010 [triangle]); Yang et al. (2010 [triangle]). For applications of 1,2,4,5-tetra­zine derivatives, see: Sauer (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2651-scheme1.jpg

Experimental

Crystal data

  • C11H11ClN4O
  • M r = 250.69
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2651-efi1.jpg
  • a = 15.165 (3) Å
  • b = 8.0452 (15) Å
  • c = 19.349 (4) Å
  • V = 2360.7 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 93 K
  • 0.47 × 0.40 × 0.37 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer
  • 17617 measured reflections
  • 2705 independent reflections
  • 2599 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.152
  • S = 1.01
  • 2705 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037839/cv2768sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037839/cv2768Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are very grateful to the Science Foundation for the Excellent Youth Scholars of the Department of Education of Zhejiang Province and the Educational Commission of Zhejiang Province of China (grant No. Y201018289).

supplementary crystallographic information

Comment

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer,1996). Dihydro-1,2,4,5- tetrazine has four isomers, namely 1,2-, 1,4-, 1,6- and 3,6-dihydro-1,2,4,5- tetrazines. The 1,6-dihydro structures (Stam et al., 1982; Jennison et al., 1986) were found, by X-ray diffraction, to be homoaromatic. In continuation of our work on the structure-activity relationship of 1,6-dihydro-1,2,4,5-tetrazine derivatives (Hu et al., 2004, 2005), we have obtained the title compound, (I) (Fig.1).

In the tetrazine ring of (I), atoms N1, N2, N3 and N4 are coplanar, while atoms C7 and C8 deviate from the plane by 0.254 (3) and 0.621 (3) Å, respectively. The N2/C7/N3 and N1/C8/N4 planes make dihedral angles of 7.61 (2)° and 44.04 (2)°, respectively, with the N1/N2/N3/N4 plane, the tetrazine ring adopts an unsymmetrical boat conformation. The benzene ring make dihedral angle of 18.5 (2)° with the N1/N2/N3/N4 plane. N1 is almost sp2 hybridized due to the angles around it add up to 359.9 (2)°. Compairing with similar situations in 3-phenyl-6-ethyl- 1,6-dihydro-1,2,4,5-tetrazine (Stam et al., 1982), N-(2-methylphenyl)-3-phenyl-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (Xu et al.,2010), 1-acetyl-3,6-dimethyl-1,2,4,5-tetrazine (Jennison et al.,1986) and 1-[3-(4-Methoxyphenyl)-6-methyl-1,6-dihydro-1,2,4,5- tetrazin-1-yl]propanone (Yang et al., 2010), one can state that the molecule in (I) is homoaromatic.

Experimental

3-(4-Chlorophenyl)-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (3.0 mmol), chloroform (10 ml) and pyridine(0.25 ml,3.1 mmol) were mixed. Acetyl chloride(3.0 mmol) in chloroform (10 ml) was added dropwise with stirring at room temperature. After the starting 1,6-dihydro-1,2,4,5-tetrazine was completely consumed (the reaction courses was monitored by TLC,dichloromethane system), evaporation of the chloroform, crude 1-acetyl-3-(4-chlorophenyl)-6-methyl- 1,6-dihydro-1,2,4,5-tetrazine was obtained and purified by preparative thin-layer chromatography over silica gel GF254(2 mm) (dichloromethane: petroleum ether=1:1). The solution of the compound in anhydrous ethanol was concentrated gradually at room temperature to afford single crystals, which was suitable for X-ray diffraction. (M. P. 352–354 K).1H NMR (CDCl3) δ p.p.m.: 8.10 (d,2H, J = 8.0 Hz), 7.49 (d,2H, J = 8.0 Hz), 6.87 (q,1H, J = 6.7 Hz), 2.49(s,3H), 1.05(d,3H, J = 6.4 Hz).

Refinement

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The structure of (I), shown with 30% probability displacement ellipsoids.

Crystal data

C11H11ClN4OF(000) = 1040
Mr = 250.69Dx = 1.411 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6560 reflections
a = 15.165 (3) Åθ = 3.1–27.5°
b = 8.0452 (15) ŵ = 0.31 mm1
c = 19.349 (4) ÅT = 93 K
V = 2360.7 (8) Å3Block, orange
Z = 80.47 × 0.40 × 0.37 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer2599 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.038
graphiteθmax = 27.5°, θmin = 3.4°
Detector resolution: 28.5714 pixels mm-1h = −15→19
phi and ω scansk = −7→10
17617 measured reflectionsl = −25→25
2705 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.1P)2 + 1.56P] where P = (Fo2 + 2Fc2)/3
2705 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.92289 (3)0.63612 (7)0.27240 (2)0.02638 (19)
O10.28242 (9)0.51349 (19)0.42261 (8)0.0260 (4)
N10.42522 (10)0.5869 (2)0.41004 (8)0.0165 (3)
N20.50513 (10)0.5506 (2)0.38219 (8)0.0167 (3)
N30.56159 (11)0.7128 (2)0.47435 (8)0.0191 (4)
N40.48695 (11)0.7527 (2)0.49690 (9)0.0203 (4)
C10.73156 (13)0.6887 (3)0.41229 (10)0.0226 (4)
H10.72610.72620.45860.027*
C20.81377 (13)0.6872 (3)0.38052 (10)0.0234 (4)
H20.86470.72290.40500.028*
C30.82041 (13)0.6332 (2)0.31290 (10)0.0194 (4)
C40.74733 (13)0.5800 (3)0.27600 (9)0.0202 (4)
H40.75310.54280.22960.024*
C50.66569 (13)0.5822 (3)0.30804 (10)0.0200 (4)
H50.61490.54720.28320.024*
C60.65710 (12)0.6353 (2)0.37632 (10)0.0168 (4)
C70.56927 (13)0.6386 (2)0.40816 (10)0.0164 (4)
C80.41462 (13)0.7456 (2)0.44422 (10)0.0184 (4)
H80.35640.74750.46850.022*
C90.42014 (14)0.8936 (3)0.39576 (12)0.0251 (5)
H9A0.47570.88900.36990.030*
H9B0.41790.99660.42270.030*
H9C0.37050.89060.36340.030*
C100.35516 (13)0.4761 (2)0.40099 (10)0.0192 (4)
C110.37533 (13)0.3182 (2)0.36325 (11)0.0217 (4)
H11A0.32680.23930.36970.026*
H11B0.43000.27000.38140.026*
H11C0.38250.34180.31390.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0169 (3)0.0416 (4)0.0206 (3)−0.00189 (19)0.00381 (16)−0.00357 (19)
O10.0156 (7)0.0260 (8)0.0363 (8)−0.0012 (6)0.0001 (6)0.0006 (6)
N10.0153 (8)0.0168 (8)0.0175 (8)0.0002 (6)0.0009 (6)0.0000 (6)
N20.0153 (8)0.0174 (8)0.0174 (8)0.0010 (6)0.0005 (6)0.0019 (6)
N30.0181 (8)0.0232 (9)0.0158 (8)−0.0004 (6)0.0016 (6)−0.0013 (6)
N40.0195 (8)0.0231 (8)0.0184 (8)−0.0015 (7)0.0008 (6)−0.0024 (6)
C10.0195 (10)0.0334 (11)0.0148 (8)−0.0025 (8)0.0011 (7)−0.0034 (8)
C20.0161 (9)0.0357 (12)0.0186 (9)−0.0050 (8)−0.0018 (7)−0.0049 (8)
C30.0158 (9)0.0237 (10)0.0186 (9)0.0000 (7)0.0024 (7)0.0008 (7)
C40.0200 (10)0.0251 (10)0.0153 (8)0.0012 (8)0.0005 (7)−0.0035 (7)
C50.0178 (9)0.0247 (10)0.0175 (9)−0.0008 (8)−0.0015 (7)−0.0027 (7)
C60.0163 (9)0.0170 (9)0.0172 (9)−0.0010 (7)0.0002 (7)0.0005 (6)
C70.0170 (10)0.0172 (9)0.0150 (9)0.0015 (7)−0.0008 (6)0.0004 (6)
C80.0178 (9)0.0191 (9)0.0184 (9)0.0024 (7)0.0010 (7)−0.0025 (7)
C90.0264 (11)0.0180 (10)0.0309 (11)0.0030 (8)−0.0019 (8)0.0014 (8)
C100.0174 (9)0.0205 (10)0.0198 (9)−0.0011 (7)−0.0027 (7)0.0042 (7)
C110.0208 (10)0.0182 (9)0.0263 (10)−0.0036 (8)−0.0034 (7)0.0007 (7)

Geometric parameters (Å, °)

Cl1—C31.741 (2)C4—C51.385 (3)
O1—C101.218 (2)C4—H40.9500
N1—N21.358 (2)C5—C61.395 (3)
N1—C101.398 (3)C5—H50.9500
N1—C81.447 (2)C6—C71.468 (3)
N2—C71.304 (2)C8—C91.518 (3)
N3—N41.255 (2)C8—H81.0000
N3—C71.418 (2)C9—H9A0.9800
N4—C81.499 (2)C9—H9B0.9800
C1—C21.390 (3)C9—H9C0.9800
C1—C61.394 (3)C10—C111.497 (3)
C1—H10.9500C11—H11A0.9800
C2—C31.382 (3)C11—H11B0.9800
C2—H20.9500C11—H11C0.9800
C3—C41.386 (3)
N2—N1—C10119.42 (16)N2—C7—N3121.02 (17)
N2—N1—C8118.06 (15)N2—C7—C6120.36 (17)
C10—N1—C8122.38 (16)N3—C7—C6117.48 (16)
C7—N2—N1113.33 (16)N1—C8—N4105.26 (15)
N4—N3—C7119.73 (16)N1—C8—C9113.80 (16)
N3—N4—C8114.46 (16)N4—C8—C9110.49 (16)
C2—C1—C6120.20 (17)N1—C8—H8109.1
C2—C1—H1119.9N4—C8—H8109.1
C6—C1—H1119.9C9—C8—H8109.1
C3—C2—C1119.11 (18)C8—C9—H9A109.5
C3—C2—H2120.4C8—C9—H9B109.5
C1—C2—H2120.4H9A—C9—H9B109.5
C2—C3—C4121.77 (18)C8—C9—H9C109.5
C2—C3—Cl1119.14 (15)H9A—C9—H9C109.5
C4—C3—Cl1119.08 (15)H9B—C9—H9C109.5
C5—C4—C3118.70 (17)O1—C10—N1119.20 (18)
C5—C4—H4120.7O1—C10—C11124.23 (18)
C3—C4—H4120.7N1—C10—C11116.56 (17)
C4—C5—C6120.77 (18)C10—C11—H11A109.5
C4—C5—H5119.6C10—C11—H11B109.5
C6—C5—H5119.6H11A—C11—H11B109.5
C1—C6—C5119.45 (17)C10—C11—H11C109.5
C1—C6—C7121.32 (17)H11A—C11—H11C109.5
C5—C6—C7119.21 (17)H11B—C11—H11C109.5
C10—N1—N2—C7−163.54 (16)N4—N3—C7—C6163.93 (18)
C8—N1—N2—C720.6 (2)C1—C6—C7—N2−162.04 (18)
C7—N3—N4—C8−11.1 (3)C5—C6—C7—N219.9 (3)
C6—C1—C2—C30.4 (3)C1—C6—C7—N35.9 (3)
C1—C2—C3—C4−0.2 (3)C5—C6—C7—N3−172.22 (17)
C1—C2—C3—Cl1178.44 (17)N2—N1—C8—N4−54.1 (2)
C2—C3—C4—C50.3 (3)C10—N1—C8—N4130.11 (17)
Cl1—C3—C4—C5−178.33 (16)N2—N1—C8—C967.0 (2)
C3—C4—C5—C6−0.6 (3)C10—N1—C8—C9−108.8 (2)
C2—C1—C6—C5−0.7 (3)N3—N4—C8—N147.4 (2)
C2—C1—C6—C7−178.79 (19)N3—N4—C8—C9−75.8 (2)
C4—C5—C6—C10.8 (3)N2—N1—C10—O1−175.83 (17)
C4—C5—C6—C7178.96 (19)C8—N1—C10—O1−0.1 (3)
N1—N2—C7—N322.6 (2)N2—N1—C10—C112.9 (2)
N1—N2—C7—C6−169.92 (16)C8—N1—C10—C11178.63 (17)
N4—N3—C7—N2−28.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2768).

References

  • Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett.14, 1177–1181. [PubMed]
  • Hu, W. X., Shi, H. B., Yuan, Q. & &Sun, Y. Q. (2005). J. Chem. Res. pp. 291–293.
  • Jennison, C. P. R., Mackay, D., Watson, K. N. & Taylor, N. J. (1986). J. Org. Chem.51, 3043–3051.
  • Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stam, C. H., Counotte-Potman, A. D. & Van der Plas, H. C. (1982). J. Org. Chem.47, 2856–2858.
  • Xu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem.30, 260–265.
  • Yang, Z., Xu, F. & Chen, H. (2010). Acta Cryst. E66, o969. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography