PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2639–o2640.
Published online 2010 September 25. doi:  10.1107/S1600536810037505
PMCID: PMC2983428

2-[(E)-4-(Diethyl­amino)­styr­yl]-1-methyl­pyridinium iodide

Abstract

In the title compound, C18H23N2 +·I, the cation exists in the E configuration with respect to the ethenyl C=C bond. The pyridinium and benzene rings are nearly coplanar, making a dihedral angle of 4.63 (7)°. The two ethyl groups of the diethyl­amino substituent point in opposite directions with respect to the benzene plane. In the crystal, the cation and the iodide anion are linked by a weak C—H(...)I inter­action. The cations are stacked in an anti-parallel manner along the a axis by a π–π inter­action with a centroid–centroid distance of 3.5262 (9) Å. The crystal structure is further stabilized by C—H(...)π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For background to styryl pyridinium quaternary ammonium compounds, see: Browning et al. (1922 [triangle], 1923 [triangle]); Chanawanno et al. (2010 [triangle]); Wainwright & Kristiansen (2003 [triangle]). For related structures, see: Chanawanno et al. (2008 [triangle]); Fun et al. (2009 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2639-scheme1.jpg

Experimental

Crystal data

  • C18H23N2 +·I
  • M r = 394.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2639-efi1.jpg
  • a = 7.7099 (1) Å
  • b = 20.2780 (4) Å
  • c = 10.9375 (2) Å
  • β = 92.527 (1)°
  • V = 1708.32 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.87 mm−1
  • T = 100 K
  • 0.34 × 0.30 × 0.21 mm

Data collection

  • Bruker APEXII CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.570, T max = 0.691
  • 23707 measured reflections
  • 6198 independent reflections
  • 5765 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.070
  • S = 1.10
  • 6198 reflections
  • 282 parameters
  • All H-atom parameters refined
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037505/is2599sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037505/is2599Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

For a long time, styryl pyridinium quaternary ammonium compounds were known to exhibit antiseptic properties (Browning et al., 1922, 1923). However medicinal researchers have long neglected to further develop the styryl pyridinium chromophore compounds for use as antibacterial agents due to the superior properties of penicillin until the incoming of the penicillin-resistant bacteria phenomenon, for example, methicillin-resistant Staphylococcus aureus, MRSA. The most interesting feature of styryl pyridinium quaternary ammonium compounds is their very specific activity to MRSA which is a vital drug-resistant bacteria (Wainwright & Kristiansen, 2003; Chanawanno et al., 2010). From this significant reason, our research group has synthesized and characterized several styryl pyridinium derivatives including the title compound (I) in order to search for new potent antibacterial agents. Herein we report the crystal structure of (I).

Figure 1 shows the asymmetric unit of (I), which consists of a C18H23N2+ cation and an I- anion. The cation exists in the E configuration with respect to the C6═C7 double bond [1.350 (2) Å] with the torsion angle C5–C6–C7–C8 = -179.29 (16)°. The pyridinium and benzene rings are nearly coplanar with the ethenyl bridge with the dihedral angle between the pyridinium and benzene rings being 4.63 (7)°. The two ethyl groups of the diethylamino substituent pointed towards the opposite directions with respect to the plane of benzene ring. The conformation of the diethylamino can be indicated by the torsion angles C11–N2–C14–C15 = 84.7 (2)° and C11–N2–C16–C17 = 79.0 (2)°. The bond lengths of cation in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Chanawanno et al., 2008; Fun et al., 2009).

In the crystal packing (Fig. 2), the cations are arranged in a zig-zag manner along the b axis with the iodide ions located in the interstitials of the cations and linked to the cations by a C—H···I weak interaction (Table 1). The cations stacked approximately along the a axis in an antiparallel manner by π–π interaction with the Cg1···Cg2iii distance of 3.5262 (9) Å [symmetry code: (iii) 1-x, 1-y, 1-z]; Cg1 and Cg2 are centroids of N1/C1–C5 and C8–C13 rings, respectively. The crystal structure is further stabilized by C—H···π interactions (Table 1).

Experimental

The title compound (I) was prepared by mixing 1:1:1 molar ratio solutions of 1,2-dimethylpyridinium iodide (2 g, 8.5 mmol), 4-diethylaminobenzaldehyde (1.52 ml, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in methanol (40 ml). The resulting solution was refluxed for 6 hours under a nitrogen atmosphere. The orange solid which formed was filtered and washed with diethylether. Orange block-shaped single crystals of (I) suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks (m.p. 527-529 K).

Refinement

All H atoms were located in a difference map and refined isotropically. The highest residual electron density peak is located at 1.57 Å from I1 and the deepest hole is located at 0.48 Å from I1.

Figures

Fig. 1.
The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound viewed down the a axis. Weak C—H···I interactions are shown as dashed lines.

Crystal data

C18H23N2+·IF(000) = 792
Mr = 394.28Dx = 1.533 Mg m3
Monoclinic, P21/cMelting point = 527–529 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.7099 (1) ÅCell parameters from 6198 reflections
b = 20.2780 (4) Åθ = 2.0–32.6°
c = 10.9375 (2) ŵ = 1.87 mm1
β = 92.527 (1)°T = 100 K
V = 1708.32 (5) Å3Block, orange
Z = 40.34 × 0.30 × 0.21 mm

Data collection

Bruker APEXII CCD area detector diffractometer6198 independent reflections
Radiation source: sealed tube5765 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −8→11
Tmin = 0.570, Tmax = 0.691k = −29→30
23707 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070All H-atom parameters refined
S = 1.10w = 1/[σ2(Fo2) + (0.0312P)2 + 1.8072P] where P = (Fo2 + 2Fc2)/3
6198 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.63 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.385998 (14)0.649927 (5)0.254076 (9)0.01744 (4)
N10.27082 (18)0.63425 (7)0.69740 (12)0.0128 (2)
N20.1456 (2)0.33502 (7)0.09996 (13)0.0165 (3)
C10.3117 (2)0.66702 (9)0.80338 (15)0.0156 (3)
C20.3971 (2)0.63637 (9)0.89989 (15)0.0169 (3)
C30.4439 (2)0.57021 (9)0.88598 (15)0.0181 (3)
C40.4023 (2)0.53711 (8)0.77893 (15)0.0159 (3)
C50.3120 (2)0.56923 (8)0.68124 (14)0.0130 (3)
C60.2616 (2)0.53758 (8)0.56679 (15)0.0149 (3)
C70.3027 (2)0.47469 (8)0.53980 (14)0.0141 (3)
C80.2575 (2)0.44086 (8)0.42673 (14)0.0136 (3)
C90.1595 (2)0.46906 (8)0.32844 (15)0.0144 (3)
C100.1223 (2)0.43480 (8)0.22166 (15)0.0150 (3)
C110.1815 (2)0.36902 (8)0.20590 (14)0.0135 (3)
C120.2802 (2)0.34044 (8)0.30475 (15)0.0131 (3)
C130.3169 (2)0.37578 (8)0.41093 (14)0.0133 (3)
C140.0388 (2)0.36290 (9)−0.00116 (15)0.0173 (3)
C150.1390 (3)0.40606 (10)−0.08716 (17)0.0216 (3)
C160.2067 (2)0.26717 (8)0.08518 (15)0.0164 (3)
C170.0948 (3)0.21691 (9)0.14881 (17)0.0201 (3)
C180.1817 (2)0.67224 (9)0.59821 (16)0.0182 (3)
H1A0.285 (3)0.7107 (13)0.805 (2)0.020 (6)*
H2A0.426 (4)0.6591 (13)0.971 (3)0.029 (7)*
H3A0.512 (4)0.5499 (14)0.954 (3)0.031 (7)*
H4A0.434 (3)0.4942 (13)0.774 (2)0.019 (6)*
H6A0.198 (3)0.5628 (12)0.507 (2)0.014 (5)*
H7A0.369 (3)0.4489 (13)0.598 (2)0.020 (6)*
H9A0.120 (3)0.5160 (13)0.332 (2)0.021 (6)*
H10A0.055 (4)0.4541 (14)0.158 (3)0.027 (7)*
H12A0.325 (3)0.2966 (13)0.298 (2)0.020 (6)*
H14A−0.057 (3)0.3869 (13)0.030 (2)0.017 (6)*
H13A0.384 (3)0.3571 (11)0.476 (2)0.015 (6)*
H14B−0.013 (3)0.3265 (13)−0.047 (2)0.021 (6)*
H15A0.061 (4)0.4195 (15)−0.156 (3)0.037 (8)*
H15B0.238 (4)0.3824 (14)−0.117 (2)0.026 (7)*
H15C0.180 (4)0.4425 (15)−0.047 (3)0.028 (7)*
H16A0.323 (3)0.2637 (13)0.115 (2)0.022 (6)*
H16B0.202 (3)0.2567 (13)0.002 (2)0.020 (6)*
H17A0.139 (4)0.1730 (15)0.135 (3)0.029 (7)*
H17B0.098 (3)0.2228 (14)0.236 (2)0.021 (6)*
H17C−0.022 (4)0.2207 (14)0.121 (2)0.027 (7)*
H18A0.176 (4)0.7175 (14)0.623 (2)0.027 (7)*
H18B0.069 (4)0.6552 (14)0.586 (3)0.032 (8)*
H18C0.244 (4)0.6682 (14)0.525 (3)0.023 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.02091 (6)0.01714 (6)0.01425 (6)0.00473 (4)0.00049 (4)0.00028 (3)
N10.0135 (6)0.0121 (6)0.0130 (5)0.0000 (4)0.0022 (4)0.0001 (4)
N20.0239 (7)0.0128 (6)0.0126 (6)0.0009 (5)−0.0015 (5)−0.0015 (5)
C10.0179 (7)0.0143 (7)0.0147 (6)−0.0003 (5)0.0036 (5)−0.0022 (5)
C20.0183 (7)0.0200 (7)0.0126 (6)−0.0052 (6)0.0026 (5)−0.0017 (5)
C30.0205 (7)0.0187 (7)0.0149 (6)−0.0030 (6)−0.0018 (5)0.0035 (6)
C40.0196 (7)0.0125 (7)0.0154 (6)−0.0013 (5)−0.0016 (5)0.0020 (5)
C50.0121 (6)0.0129 (6)0.0140 (6)−0.0011 (5)0.0019 (5)−0.0003 (5)
C60.0161 (7)0.0143 (7)0.0142 (6)0.0000 (5)−0.0013 (5)−0.0013 (5)
C70.0142 (6)0.0140 (7)0.0141 (6)−0.0010 (5)0.0006 (5)−0.0007 (5)
C80.0144 (6)0.0128 (6)0.0136 (6)0.0001 (5)0.0013 (5)−0.0011 (5)
C90.0143 (6)0.0128 (6)0.0160 (6)0.0015 (5)0.0014 (5)−0.0003 (5)
C100.0168 (7)0.0137 (7)0.0146 (6)0.0021 (5)−0.0005 (5)0.0014 (5)
C110.0150 (6)0.0128 (6)0.0127 (6)−0.0012 (5)0.0011 (5)−0.0010 (5)
C120.0134 (6)0.0122 (6)0.0140 (6)−0.0014 (5)0.0016 (5)0.0012 (5)
C130.0136 (6)0.0126 (6)0.0138 (6)0.0009 (5)0.0011 (5)0.0003 (5)
C140.0184 (7)0.0195 (7)0.0137 (6)−0.0006 (6)−0.0029 (5)−0.0005 (6)
C150.0229 (8)0.0255 (9)0.0166 (7)0.0000 (7)0.0018 (6)0.0029 (6)
C160.0208 (7)0.0134 (7)0.0150 (6)0.0005 (6)0.0019 (5)−0.0033 (5)
C170.0229 (8)0.0172 (8)0.0205 (7)−0.0029 (6)0.0025 (6)−0.0042 (6)
C180.0213 (8)0.0171 (7)0.0161 (7)0.0037 (6)−0.0008 (6)0.0014 (6)

Geometric parameters (Å, °)

N1—C11.361 (2)C9—H9A1.00 (3)
N1—C51.369 (2)C10—C111.423 (2)
N1—C181.475 (2)C10—H10A0.93 (3)
N2—C111.366 (2)C11—C121.418 (2)
N2—C141.463 (2)C12—C131.383 (2)
N2—C161.466 (2)C12—H12A0.96 (3)
C1—C21.368 (2)C13—H13A0.94 (2)
C1—H1A0.91 (3)C14—C151.521 (3)
C2—C31.399 (3)C14—H14A0.96 (3)
C2—H2A0.92 (3)C14—H14B0.97 (3)
C3—C41.375 (2)C15—H15A0.99 (3)
C3—H3A0.98 (3)C15—H15B0.97 (3)
C4—C51.409 (2)C15—H15C0.91 (3)
C4—H4A0.91 (3)C16—C171.523 (3)
C5—C61.445 (2)C16—H16A0.94 (3)
C6—C71.350 (2)C16—H16B0.94 (2)
C6—H6A0.95 (2)C17—H17A0.97 (3)
C7—C81.443 (2)C17—H17B0.96 (2)
C7—H7A0.95 (3)C17—H17C0.94 (3)
C8—C91.408 (2)C18—H18A0.96 (3)
C8—C131.410 (2)C18—H18B0.94 (3)
C9—C101.378 (2)C18—H18C0.95 (3)
C1—N1—C5122.25 (14)C12—C11—C10117.06 (14)
C1—N1—C18117.02 (14)C13—C12—C11120.75 (15)
C5—N1—C18120.72 (14)C13—C12—H12A119.0 (15)
C11—N2—C14122.16 (15)C11—C12—H12A120.2 (15)
C11—N2—C16120.88 (14)C12—C13—C8122.16 (14)
C14—N2—C16116.90 (13)C12—C13—H13A120.7 (15)
N1—C1—C2121.39 (16)C8—C13—H13A117.1 (15)
N1—C1—H1A116.3 (16)N2—C14—C15113.93 (15)
C2—C1—H1A122.2 (16)N2—C14—H14A110.1 (15)
C1—C2—C3117.98 (15)C15—C14—H14A110.4 (15)
C1—C2—H2A120.7 (18)N2—C14—H14B107.8 (16)
C3—C2—H2A121.3 (18)C15—C14—H14B109.0 (16)
C4—C3—C2120.60 (15)H14A—C14—H14B105 (2)
C4—C3—H3A122.5 (17)C14—C15—H15A108.9 (18)
C2—C3—H3A116.9 (17)C14—C15—H15B110.5 (17)
C3—C4—C5120.59 (16)H15A—C15—H15B110 (2)
C3—C4—H4A118.0 (16)C14—C15—H15C110.0 (18)
C5—C4—H4A121.4 (16)H15A—C15—H15C109 (2)
N1—C5—C4117.18 (14)H15B—C15—H15C108 (2)
N1—C5—C6118.99 (14)N2—C16—C17112.73 (15)
C4—C5—C6123.83 (15)N2—C16—H16A109.7 (16)
C7—C6—C5123.55 (15)C17—C16—H16A109.9 (16)
C7—C6—H6A118.6 (15)N2—C16—H16B108.7 (16)
C5—C6—H6A117.8 (15)C17—C16—H16B107.1 (16)
C6—C7—C8125.91 (15)H16A—C16—H16B109 (2)
C6—C7—H7A119.8 (15)C16—C17—H17A109.6 (17)
C8—C7—H7A114.3 (15)C16—C17—H17B112.3 (16)
C9—C8—C13116.92 (14)H17A—C17—H17B106 (2)
C9—C8—C7124.21 (15)C16—C17—H17C110.5 (17)
C13—C8—C7118.86 (14)H17A—C17—H17C111 (2)
C10—C9—C8121.80 (15)H17B—C17—H17C107 (2)
C10—C9—H9A117.3 (14)N1—C18—H18A108.7 (16)
C8—C9—H9A120.8 (14)N1—C18—H18B107.8 (18)
C9—C10—C11121.30 (15)H18A—C18—H18B110 (2)
C9—C10—H10A120.4 (17)N1—C18—H18C109.5 (17)
C11—C10—H10A118.3 (17)H18A—C18—H18C110 (2)
N2—C11—C12121.47 (15)H18B—C18—H18C111 (3)
N2—C11—C10121.47 (15)
C5—N1—C1—C20.1 (2)C7—C8—C9—C10179.02 (16)
C18—N1—C1—C2−178.88 (16)C8—C9—C10—C110.0 (3)
N1—C1—C2—C31.0 (3)C14—N2—C11—C12177.77 (15)
C1—C2—C3—C4−1.1 (3)C16—N2—C11—C120.6 (2)
C2—C3—C4—C50.1 (3)C14—N2—C11—C10−2.6 (3)
C1—N1—C5—C4−1.1 (2)C16—N2—C11—C10−179.73 (15)
C18—N1—C5—C4177.87 (15)C9—C10—C11—N2−179.66 (16)
C1—N1—C5—C6178.99 (15)C9—C10—C11—C120.0 (2)
C18—N1—C5—C6−2.1 (2)N2—C11—C12—C13179.33 (15)
C3—C4—C5—N11.0 (2)C10—C11—C12—C13−0.3 (2)
C3—C4—C5—C6−179.10 (16)C11—C12—C13—C80.6 (2)
N1—C5—C6—C7176.94 (16)C9—C8—C13—C12−0.6 (2)
C4—C5—C6—C7−3.0 (3)C7—C8—C13—C12−179.43 (15)
C5—C6—C7—C8−179.29 (16)C11—N2—C14—C1584.7 (2)
C6—C7—C8—C9−1.4 (3)C16—N2—C14—C15−98.03 (19)
C6—C7—C8—C13177.33 (16)C11—N2—C16—C1779.0 (2)
C13—C8—C9—C100.3 (2)C14—N2—C16—C17−98.24 (18)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1A···I1i0.91 (3)2.99 (3)3.7980 (18)148.8 (19)
C18—H18B···Cg2ii0.94 (3)2.79 (3)3.6270 (17)149 (3)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2599).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Browning, C. H., Cohen, J. B., Ellingworth, S. & Gulbransen, R. (1923). Br. Med. J 25, 326. [PMC free article] [PubMed]
  • Browning, C. H., Cohen, J. B. & Gulbransen, R. (1922). Br. Med. J 1, 514–515. [PMC free article] [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem 45, 4199–4208. [PubMed]
  • Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883. [PMC free article] [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1934–o1935. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Agents, 22, 479–486. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography