PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1239–m1240.
Published online 2010 September 11. doi:  10.1107/S1600536810033763
PMCID: PMC2983427

Bis(3-methyl­phenolato-κO)(nitros­yl-κN)[tris­(3,5-dimethyl­pyrazol-1-yl-κN 2)hydridoborato]molybdenum(II)

Abstract

The title complex, [Mo(C15H22BN6)(C7H7O)2(NO)], contains an {MoNO}4 core stabilized by κ3­-hydrotris­(3,5-dimethyl­pyrazol-1-yl)borate, [TpMe2], and two anionic m-cresolate ligands, leading to a distorted octa­hedral geometry for the Mo atom. The short Mo—O bond lengths [1.935 (2) and 1.971 (2) Å], as well as large Mo—O—Csp 2 angles [134.2 (2) and 143.54 (19)°], indicate dπMopπO inter­actions, which are clearly weaker when compared with {Mo(NO)(TpMe2)} alkoxides. The nitrosyl system is virtually linear [179.3 (3)°] with Mo—N and N—O bond lengths of 1.760 (2) and 1.205 (3) Å, respectively. Intra- and inter­molecular C—H(Ph or CH3)(...)π(Ph) inter­actions between adjacent phenyl rings are found in the crystal structure (d H(...)Ph in the range 2.743–2.886 Å). One of the Ph rings shows disorder, i.e. swinging in the ring plane.

Related literature

The importance of this class of Mo complexes comes from the fact that some {MoNO}4 alkoxides are efficient catalysts in the cathodic reduction of CHCl3. For the synthesis, spectroscopic characterization and electrochemical properties of [tris­(3,5-dimethyl­pyrazol-1-yl)borato]nitro­sylmolybdenum(II) bis-cresolates, see: Włodarczyk et al. (2008a [triangle]). For the spectroscopic characterization of the mono-cresolate analogue of the title compound, see: McCleverty et al. (1983 [triangle]). For related structurally characterized {Mo(NO)(TpMe2)}-alkoxides, see: Romańczyk et al. (2007 [triangle]); Włodarczyk et al. (2008c [triangle]). For the electrocatalytic activity of bis-alkoxide Mo nitro­syls in the reduction of CHCl3, see: Włodarczyk et al. (2008b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1239-scheme1.jpg

Experimental

Crystal data

  • [Mo(C15H22BN6)(C7H7O)2(NO)]
  • M r = 637.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1239-efi1.jpg
  • a = 8.041 (5) Å
  • b = 13.562 (5) Å
  • c = 14.591 (5) Å
  • α = 86.103 (5)°
  • β = 83.533 (5)°
  • γ = 74.597 (5)°
  • V = 1523.1 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 295 K
  • 0.22 × 0.15 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997 [triangle]) T min = 0.903, T max = 0.954
  • 12695 measured reflections
  • 6901 independent reflections
  • 5801 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.105
  • S = 1.08
  • 6901 reflections
  • 383 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033763/rk2216sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033763/rk2216Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The stable 16e complexes containing {MoNO}4 core stabilized by tripodal hydrotris(3,5-dimethylpyrazol-1-yl)borate and two anionic co-ligands undergo easily reversible 1e reduction at a potential, E1/2, which can be tuned in the huge range of 2200 mV by selecting suitable co-ligands (Włodarczyk et al., 2008c). The 17e species based on the {Mo(NO)(TpMe2)(O-)2} moiety very efficiently catalyse the dehalogenation of CHCl3; their activity is strictly associated with the E1/2 value (Włodarczyk et al., 2008b). The structural study of title complex is a part of a larger project concerning examination of molecules which may be potentially applied as electrocatalysts.

The title complex (Fig. 1) contains a pseudo-mirror plane of symmetry passing through Mo, NO, B and the N31/N32/C33/C34/C35 pyrazolyl ring (approximate Cs symmetry which is reflected in 1H NMR spectrum). The longer Mo–O distances, i.e. weaker π-donation from O to Mo, in the bis-cresolato complex, than compared with those found for {Mo(NO)(TpMe2)}-alkoxides, certainly result from additional electron delocalization to sp2-hybridized carbon (which is precluded in the case of the latter complexes, hence Mo–Oalkoxide av. distance is 1.88Å, see: Romańczyk et al., 2007; Włodarczyk et al., 2008c) and is reflected in hypsochromically shifted νNO band in the title complex (McCleverty et al., 1983). The lengthening of the Mo1–N31 bond is attributed to the trans-influence of the NO group. Intermolecular Ph···Ph interactions between adjacent nearly perpendicular rings (C46B···H54i distance is 2.873Å) and also between rings and methyl groups (C44···H48Bii distance is 2.886Å), stabilize the crystal structure (Fig. 2), symmetry codes: (i) 1+x, y, z; (ii) 1-x, -y, -z. As mentioned above one of the Ph rings (linked with O41) is disordered, i.e. it swings in the ring plane.

Experimental

The complex was synthesized following the literature from the reaction of [Mo(NO)(TpMe)I2].C6H5CH3 and m-cresol in the presence of Et3N in boiling dichloromethane and characterized by mass spectrometry, IR, 1H NMR spectroscopy as well as cyclic voltammetry (Włodarczyk et al., 2008a). A dark brown crystals were grown by slow evaporation of solvent from a dichloromethane/n-hexane solution.

Refinement

The shape of the displacement elipsoids of atoms C43, C44, C45, C46, C47 and C48 suggests some kind of swinging disorder of the aromatic ring, however attempts to modelling of this disorder hasn't gave satisfactory results. All hydrogen atoms joined to carbon atoms of the discussed compound were positioned with an idealized geometry and refined using a riding model with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic, C–H = 0.96Å and Uiso(H) = 1.5Ueq(C) for the methyl groups. Hydrogen atom joined to boron atom was found from the difference Fourier map and fully refined.

Figures

Fig. 1.
The molecular structure of title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
Intermolecular interactions in the crystal structure of the title compound.

Crystal data

[Mo(C15H22BN6)(C7H7O)2(NO)]Z = 2
Mr = 637.40F(000) = 660
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.041 (5) ÅCell parameters from 6763 reflections
b = 13.562 (5) Åθ = 1.0–27.5°
c = 14.591 (5) ŵ = 0.47 mm1
α = 86.103 (5)°T = 295 K
β = 83.533 (5)°Prism, dark brown
γ = 74.597 (5)°0.22 × 0.15 × 0.1 mm
V = 1523.1 (12) Å3

Data collection

Nonius KappaCCD diffractometer5801 reflections with I > 2σ(I)
ω– and [var phi]–scansRint = 0.024
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997)θmax = 27.4°, θmin = 2.9°
Tmin = 0.903, Tmax = 0.954h = −10→10
12695 measured reflectionsk = −17→17
6901 independent reflectionsl = −18→18

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0476P)2 + 0.7213P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max = 0.001
wR(F2) = 0.105Δρmax = 0.68 e Å3
S = 1.08Δρmin = −0.51 e Å3
6901 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
383 parametersExtinction coefficient: 0.0117 (12)
0 restraints

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
B10.0436 (4)0.5567 (2)0.2703 (2)0.0491 (7)
Mo10.07282 (3)0.315037 (17)0.229233 (15)0.04338 (10)
N110.1515 (3)0.43407 (18)0.13985 (15)0.0483 (5)
N120.1411 (3)0.52830 (17)0.17426 (15)0.0478 (5)
C130.2049 (4)0.5870 (2)0.1076 (2)0.0584 (7)
C140.2583 (4)0.5300 (3)0.0305 (2)0.0667 (9)
H140.30910.5504−0.02550.08*
C150.2223 (4)0.4361 (3)0.0517 (2)0.0579 (7)
C160.2551 (5)0.3471 (3)−0.0090 (2)0.0787 (10)
H16A0.32450.28730.02060.118*
H16B0.31520.3617−0.06690.118*
H16C0.14660.3351−0.01970.118*
C170.2090 (6)0.6948 (3)0.1220 (3)0.0778 (10)
H17A0.09320.73860.12480.117*
H17B0.27910.71760.07170.117*
H17C0.25720.69720.17880.117*
N21−0.1565 (3)0.44545 (18)0.25060 (16)0.0484 (5)
N22−0.1381 (3)0.53995 (17)0.26969 (16)0.0491 (5)
C23−0.2964 (4)0.6069 (2)0.2796 (2)0.0596 (8)
C24−0.4160 (4)0.5555 (3)0.2679 (2)0.0655 (9)
H24−0.53550.58270.27150.079*
C25−0.3275 (4)0.4552 (3)0.2497 (2)0.0566 (7)
C26−0.4001 (4)0.3693 (3)0.2310 (3)0.0755 (10)
H26A−0.33760.33570.17690.113*
H26B−0.52020.39560.22120.113*
H26C−0.38940.32130.28290.113*
C27−0.3215 (5)0.7166 (3)0.2991 (3)0.0823 (11)
H27A−0.2680.72120.35360.123*
H27B−0.44320.74950.30830.123*
H27C−0.26940.74980.24780.123*
N310.1762 (3)0.38254 (16)0.33866 (15)0.0427 (5)
N320.1396 (3)0.48717 (16)0.34540 (15)0.0439 (5)
C330.2048 (4)0.5086 (2)0.42083 (19)0.0503 (6)
C340.2859 (4)0.4179 (2)0.4624 (2)0.0550 (7)
H340.34350.40950.51540.066*
C350.2656 (4)0.3409 (2)0.41023 (19)0.0478 (6)
C360.3312 (5)0.2281 (2)0.4255 (2)0.0651 (8)
H36A0.38510.19790.36840.098*
H36B0.23620.19970.44790.098*
H36C0.41440.2140.47010.098*
C370.1823 (5)0.6152 (3)0.4507 (2)0.0681 (9)
H37A0.24560.65050.40620.102*
H37B0.22540.61250.50980.102*
H37C0.06160.65080.45510.102*
O410.3084 (3)0.23057 (15)0.21148 (14)0.0557 (5)
C420.3831 (5)0.1373 (3)0.1751 (2)0.0686 (9)
C430.3018 (7)0.0590 (3)0.1884 (3)0.0873 (12)
H430.19040.07010.21830.105*
C440.3901 (10)−0.0373 (4)0.1560 (4)0.123 (2)
H440.3371−0.09080.16440.148*
C450.5542 (10)−0.0536 (5)0.1120 (4)0.136 (3)
H450.6119−0.11840.09160.164*
C460.6349 (7)0.0241 (5)0.0976 (3)0.1104 (19)
C470.5484 (5)0.1210 (3)0.1283 (3)0.0871 (13)
H470.60080.17470.11750.104*
C480.8087 (8)−0.0018 (6)0.0543 (5)0.169 (3)
H48A0.88370.01680.09280.254*
H48B0.81290.0344−0.00440.254*
H48C0.846−0.07420.04540.254*
O51−0.0196 (3)0.24020 (14)0.33482 (13)0.0528 (5)
C52−0.1014 (4)0.1689 (2)0.3574 (2)0.0585 (7)
C53−0.1504 (5)0.1115 (3)0.2944 (3)0.0760 (10)
H53−0.12720.12360.23140.091*
C54−0.2322 (6)0.0376 (3)0.3251 (3)0.0819 (11)
H54−0.26550.00040.28250.098*
C55−0.2668 (5)0.0168 (3)0.4192 (3)0.0785 (11)
H55−0.3208−0.03470.43880.094*
C56−0.2208 (4)0.0727 (2)0.4834 (3)0.0641 (8)
C57−0.1373 (4)0.1480 (2)0.4516 (2)0.0586 (7)
H57−0.10450.18550.49420.07*
C58−0.2607 (6)0.0553 (3)0.5851 (3)0.0866 (12)
H58A−0.2717−0.01330.59730.13*
H58B−0.36740.1030.6060.13*
H58C−0.16860.06490.61710.13*
N61−0.0075 (3)0.26435 (19)0.14084 (17)0.0542 (6)
O62−0.0606 (4)0.2291 (2)0.07993 (17)0.0799 (7)
H10.035 (4)0.641 (2)0.283 (2)0.053 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
B10.0534 (18)0.0410 (15)0.0496 (17)−0.0084 (13)−0.0011 (13)−0.0013 (12)
Mo10.04415 (14)0.04337 (14)0.04167 (14)−0.00827 (9)−0.00681 (9)−0.00342 (9)
N110.0433 (12)0.0542 (13)0.0430 (12)−0.0067 (10)−0.0002 (9)−0.0021 (10)
N120.0471 (12)0.0482 (12)0.0464 (12)−0.0117 (10)−0.0030 (9)0.0055 (9)
C130.0569 (17)0.0637 (18)0.0535 (17)−0.0177 (14)−0.0071 (13)0.0157 (14)
C140.0624 (19)0.087 (2)0.0480 (16)−0.0212 (17)0.0012 (14)0.0160 (16)
C150.0498 (16)0.077 (2)0.0420 (14)−0.0106 (14)−0.0006 (12)0.0019 (13)
C160.084 (2)0.096 (3)0.0488 (18)−0.013 (2)0.0071 (16)−0.0143 (17)
C170.094 (3)0.070 (2)0.075 (2)−0.034 (2)−0.017 (2)0.0232 (18)
N210.0401 (11)0.0553 (13)0.0472 (12)−0.0094 (10)−0.0024 (9)0.0010 (10)
N220.0443 (12)0.0478 (12)0.0483 (12)−0.0014 (10)−0.0022 (9)0.0001 (10)
C230.0516 (16)0.0640 (18)0.0469 (15)0.0106 (14)−0.0009 (12)0.0037 (13)
C240.0375 (14)0.085 (2)0.0600 (18)0.0053 (15)−0.0010 (13)0.0065 (16)
C250.0395 (14)0.078 (2)0.0488 (15)−0.0120 (14)−0.0020 (11)0.0077 (14)
C260.0498 (18)0.094 (3)0.087 (3)−0.0272 (18)−0.0093 (16)0.010 (2)
C270.081 (3)0.060 (2)0.086 (3)0.0149 (18)−0.003 (2)−0.0023 (18)
N310.0437 (11)0.0393 (10)0.0436 (11)−0.0082 (9)−0.0043 (9)−0.0009 (9)
N320.0458 (12)0.0412 (11)0.0439 (11)−0.0102 (9)−0.0023 (9)−0.0049 (9)
C330.0558 (16)0.0546 (15)0.0429 (14)−0.0191 (13)0.0003 (12)−0.0080 (12)
C340.0639 (18)0.0622 (17)0.0422 (14)−0.0191 (14)−0.0125 (13)−0.0028 (12)
C350.0481 (14)0.0521 (15)0.0432 (14)−0.0125 (12)−0.0076 (11)0.0006 (11)
C360.079 (2)0.0523 (16)0.0625 (19)−0.0095 (15)−0.0258 (16)0.0074 (14)
C370.082 (2)0.0601 (18)0.066 (2)−0.0222 (17)−0.0030 (17)−0.0216 (15)
O410.0541 (11)0.0497 (11)0.0579 (12)0.0004 (9)−0.0110 (9)−0.0110 (9)
C420.075 (2)0.067 (2)0.0519 (17)0.0139 (17)−0.0235 (15)−0.0163 (15)
C430.125 (4)0.0540 (19)0.078 (3)−0.009 (2)−0.022 (2)−0.0086 (18)
C440.195 (7)0.059 (2)0.111 (4)−0.001 (3)−0.059 (4)−0.017 (2)
C450.175 (6)0.094 (4)0.108 (4)0.057 (4)−0.065 (4)−0.056 (3)
C460.098 (3)0.115 (4)0.090 (3)0.045 (3)−0.036 (3)−0.051 (3)
C470.070 (2)0.097 (3)0.078 (2)0.021 (2)−0.0231 (19)−0.039 (2)
C480.122 (5)0.201 (7)0.151 (6)0.043 (5)−0.025 (4)−0.094 (6)
O510.0647 (12)0.0466 (10)0.0489 (11)−0.0155 (9)−0.0124 (9)−0.0007 (8)
C520.0586 (17)0.0537 (16)0.0634 (18)−0.0119 (14)−0.0161 (14)0.0024 (14)
C530.100 (3)0.073 (2)0.068 (2)−0.037 (2)−0.030 (2)0.0079 (17)
C540.105 (3)0.069 (2)0.088 (3)−0.039 (2)−0.042 (2)0.0056 (19)
C550.081 (2)0.060 (2)0.103 (3)−0.0299 (18)−0.030 (2)0.0211 (19)
C560.0578 (18)0.0530 (17)0.076 (2)−0.0084 (14)−0.0079 (15)0.0113 (15)
C570.0628 (18)0.0496 (16)0.0618 (18)−0.0116 (14)−0.0101 (14)0.0040 (13)
C580.090 (3)0.073 (2)0.087 (3)−0.015 (2)0.009 (2)0.013 (2)
N610.0602 (15)0.0551 (14)0.0491 (13)−0.0144 (11)−0.0125 (11)−0.0046 (11)
O620.102 (2)0.0904 (18)0.0586 (14)−0.0349 (15)−0.0271 (13)−0.0076 (13)

Geometric parameters (Å, °)

B1—N321.533 (4)C33—C371.497 (4)
B1—N221.539 (4)C34—C351.387 (4)
B1—N121.546 (4)C34—H340.93
B1—H11.15 (3)C35—C361.490 (4)
Mo1—N112.186 (2)C36—H36A0.96
Mo1—N212.200 (2)C36—H36B0.96
Mo1—N312.232 (2)C36—H36C0.96
Mo1—O411.935 (2)C37—H37A0.96
Mo1—O511.971 (2)C37—H37B0.96
Mo1—N611.760 (2)C37—H37C0.96
N11—C151.349 (4)O41—C421.362 (4)
N11—N121.383 (3)C42—C431.380 (6)
N12—C131.357 (4)C42—C471.395 (6)
C13—C141.373 (5)C43—C441.395 (6)
C13—C171.501 (5)C43—H430.93
C14—C151.386 (5)C44—C451.370 (10)
C14—H140.93C44—H440.93
C15—C161.495 (5)C45—C461.370 (9)
C16—H16A0.96C45—H450.93
C16—H16B0.96C46—C471.391 (6)
C16—H16C0.96C46—C481.430 (8)
C17—H17A0.96C47—H470.93
C17—H17B0.96C48—H48A0.96
C17—H17C0.96C48—H48B0.96
N21—C251.347 (4)C48—H48C0.96
N21—N221.379 (3)O51—C521.311 (4)
N22—C231.352 (4)C52—C531.396 (5)
C23—C241.360 (5)C52—C571.397 (5)
C23—C271.490 (5)C53—C541.364 (5)
C24—C251.385 (5)C53—H530.93
C24—H240.93C54—C551.394 (6)
C25—C261.488 (5)C54—H540.93
C26—H26A0.96C55—C561.383 (5)
C26—H26B0.96C55—H550.93
C26—H26C0.96C56—C571.393 (4)
C27—H27A0.96C56—C581.499 (5)
C27—H27B0.96C57—H570.93
C27—H27C0.96C58—H58A0.96
N31—C351.342 (3)C58—H58B0.96
N31—N321.378 (3)C58—H58C0.96
N32—C331.351 (3)N61—O621.205 (3)
C33—C341.367 (4)
N32—B1—N22109.8 (2)N32—N31—Mo1120.68 (15)
N32—B1—N12109.9 (2)C33—N32—N31109.4 (2)
N22—B1—N12106.9 (2)C33—N32—B1131.7 (2)
N32—B1—H1109.4 (15)N31—N32—B1118.9 (2)
N22—B1—H1111.0 (15)N32—C33—C34107.9 (2)
N12—B1—H1109.7 (15)N32—C33—C37123.3 (3)
N11—Mo1—N2178.50 (9)C34—C33—C37128.7 (3)
N11—Mo1—N3183.91 (8)C33—C34—C35106.6 (2)
N11—Mo1—O4188.87 (9)C33—C34—H34126.7
N11—Mo1—O51163.39 (8)C35—C34—H34126.7
N21—Mo1—N3184.92 (9)N31—C35—C34109.6 (2)
N21—Mo1—O5189.71 (9)N31—C35—C36122.3 (2)
N21—Mo1—O41163.62 (9)C34—C35—C36128.1 (3)
N31—Mo1—N61178.48 (10)C35—C36—H36A109.5
O41—Mo1—O51100.29 (9)C35—C36—H36B109.5
N61—Mo1—O4196.67 (11)H36A—C36—H36B109.5
N61—Mo1—O5198.05 (10)C35—C36—H36C109.5
N61—Mo1—N1194.57 (10)H36A—C36—H36C109.5
N61—Mo1—N2194.71 (11)H36B—C36—H36C109.5
O41—Mo1—N3183.40 (9)C33—C37—H37A109.5
O51—Mo1—N3183.43 (8)C33—C37—H37B109.5
C15—N11—N12106.6 (2)H37A—C37—H37B109.5
C15—N11—Mo1133.1 (2)C33—C37—H37C109.5
N12—N11—Mo1120.27 (16)H37A—C37—H37C109.5
C13—N12—N11109.4 (2)H37B—C37—H37C109.5
C13—N12—B1130.2 (3)Mo1—O41—C42134.2 (2)
N11—N12—B1119.9 (2)O41—C42—C43121.2 (4)
N12—C13—C14107.6 (3)O41—C42—C47118.3 (4)
N12—C13—C17122.9 (3)C43—C42—C47120.5 (4)
C14—C13—C17129.5 (3)C42—C43—C44118.7 (5)
C13—C14—C15107.1 (3)C42—C43—H43120.6
C13—C14—H14126.5C44—C43—H43120.6
C15—C14—H14126.5C45—C44—C43120.6 (6)
N11—C15—C14109.4 (3)C45—C44—H44119.7
N11—C15—C16122.5 (3)C43—C44—H44119.7
C14—C15—C16128.1 (3)C44—C45—C46121.1 (5)
C15—C16—H16A109.5C44—C45—H45119.5
C15—C16—H16B109.5C46—C45—H45119.5
H16A—C16—H16B109.5C45—C46—C47119.4 (5)
C15—C16—H16C109.5C45—C46—C48116.7 (6)
H16A—C16—H16C109.5C47—C46—C48123.9 (7)
H16B—C16—H16C109.5C46—C47—C42119.8 (5)
C13—C17—H17A109.5C46—C47—H47120.1
C13—C17—H17B109.5C42—C47—H47120.1
H17A—C17—H17B109.5C46—C48—H48A109.5
C13—C17—H17C109.5C46—C48—H48B109.5
H17A—C17—H17C109.5H48A—C48—H48B109.5
H17B—C17—H17C109.5C46—C48—H48C109.5
C25—N21—N22107.0 (2)H48A—C48—H48C109.5
C25—N21—Mo1132.7 (2)H48B—C48—H48C109.5
N22—N21—Mo1120.31 (16)Mo1—O51—C52143.54 (19)
C23—N22—N21109.1 (2)O51—C52—C53124.7 (3)
C23—N22—B1130.5 (3)O51—C52—C57117.0 (3)
N21—N22—B1120.2 (2)C53—C52—C57118.3 (3)
N22—C23—C24107.8 (3)C54—C53—C52120.2 (4)
N22—C23—C27122.6 (3)C54—C53—H53119.9
C24—C23—C27129.6 (3)C52—C53—H53119.9
C23—C24—C25107.5 (3)C53—C54—C55121.2 (3)
C23—C24—H24126.2C53—C54—H54119.4
C25—C24—H24126.2C55—C54—H54119.4
N21—C25—C24108.6 (3)C56—C55—C54120.1 (3)
N21—C25—C26123.3 (3)C56—C55—H55120
C24—C25—C26128.1 (3)C54—C55—H55120
C25—C26—H26A109.5C55—C56—C57118.4 (3)
C25—C26—H26B109.5C55—C56—C58121.8 (3)
H26A—C26—H26B109.5C57—C56—C58119.7 (3)
C25—C26—H26C109.5C56—C57—C52121.8 (3)
H26A—C26—H26C109.5C56—C57—H57119.1
H26B—C26—H26C109.5C52—C57—H57119.1
C23—C27—H27A109.5C56—C58—H58A109.5
C23—C27—H27B109.5C56—C58—H58B109.5
H27A—C27—H27B109.5H58A—C58—H58B109.5
C23—C27—H27C109.5C56—C58—H58C109.5
H27A—C27—H27C109.5H58A—C58—H58C109.5
H27B—C27—H27C109.5H58B—C58—H58C109.5
C35—N31—N32106.5 (2)Mo1—N61—O62179.3 (3)
C35—N31—Mo1132.66 (18)
N61—Mo1—N11—C15−38.0 (3)O51—Mo1—N31—C3549.1 (2)
O41—Mo1—N11—C1558.6 (3)N11—Mo1—N31—C35−141.7 (2)
O51—Mo1—N11—C15−177.5 (3)N21—Mo1—N31—C35139.4 (2)
N21—Mo1—N11—C15−131.9 (3)O41—Mo1—N31—N32133.34 (19)
N31—Mo1—N11—C15142.0 (3)O51—Mo1—N31—N32−125.45 (19)
N61—Mo1—N11—N12146.0 (2)N11—Mo1—N31—N3243.78 (18)
O41—Mo1—N11—N12−117.38 (19)N21—Mo1—N31—N32−35.16 (18)
O51—Mo1—N11—N126.6 (4)C35—N31—N32—C33−0.6 (3)
N21—Mo1—N11—N1252.13 (19)Mo1—N31—N32—C33175.22 (17)
N31—Mo1—N11—N12−33.90 (19)C35—N31—N32—B1177.5 (2)
C15—N11—N12—C130.0 (3)Mo1—N31—N32—B1−6.7 (3)
Mo1—N11—N12—C13176.92 (18)N22—B1—N32—C33−119.4 (3)
C15—N11—N12—B1172.1 (2)N12—B1—N32—C33123.3 (3)
Mo1—N11—N12—B1−11.0 (3)N22—B1—N32—N3163.0 (3)
N32—B1—N12—C13−123.7 (3)N12—B1—N32—N31−54.3 (3)
N22—B1—N12—C13117.2 (3)N31—N32—C33—C340.8 (3)
N32—B1—N12—N1166.1 (3)B1—N32—C33—C34−177.0 (3)
N22—B1—N12—N11−53.0 (3)N31—N32—C33—C37−177.6 (3)
N11—N12—C13—C14−0.7 (3)B1—N32—C33—C374.6 (5)
B1—N12—C13—C14−171.7 (3)N32—C33—C34—C35−0.7 (3)
N11—N12—C13—C17178.7 (3)C37—C33—C34—C35177.6 (3)
B1—N12—C13—C177.7 (5)N32—N31—C35—C340.1 (3)
N12—C13—C14—C151.0 (4)Mo1—N31—C35—C34−174.97 (19)
C17—C13—C14—C15−178.3 (3)N32—N31—C35—C36−179.0 (3)
N12—N11—C15—C140.6 (3)Mo1—N31—C35—C365.9 (4)
Mo1—N11—C15—C14−175.7 (2)C33—C34—C35—N310.4 (3)
N12—N11—C15—C16179.9 (3)C33—C34—C35—C36179.4 (3)
Mo1—N11—C15—C163.6 (5)N61—Mo1—O41—C42−24.6 (3)
C13—C14—C15—N11−1.0 (4)O51—Mo1—O41—C4274.9 (3)
C13—C14—C15—C16179.8 (3)N11—Mo1—O41—C42−119.1 (3)
N61—Mo1—N21—C2538.2 (3)N21—Mo1—O41—C42−158.3 (3)
O41—Mo1—N21—C25172.2 (3)N31—Mo1—O41—C42156.9 (3)
O51—Mo1—N21—C25−59.8 (3)Mo1—O41—C42—C43−37.3 (5)
N11—Mo1—N21—C25132.0 (3)Mo1—O41—C42—C47146.1 (3)
N31—Mo1—N21—C25−143.2 (3)O41—C42—C43—C44−174.9 (4)
N61—Mo1—N21—N22−142.2 (2)C47—C42—C43—C441.6 (6)
O41—Mo1—N21—N22−8.3 (4)C42—C43—C44—C450.0 (7)
O51—Mo1—N21—N22119.75 (19)C43—C44—C45—C46−0.8 (8)
N11—Mo1—N21—N22−48.47 (19)C44—C45—C46—C470.0 (8)
N31—Mo1—N21—N2236.33 (19)C44—C45—C46—C48177.6 (5)
C25—N21—N22—C23−0.5 (3)C45—C46—C47—C421.6 (6)
Mo1—N21—N22—C23179.83 (18)C48—C46—C47—C42−175.8 (5)
C25—N21—N22—B1−176.5 (2)O41—C42—C47—C46174.2 (3)
Mo1—N21—N22—B13.8 (3)C43—C42—C47—C46−2.4 (6)
N32—B1—N22—C23122.9 (3)N61—Mo1—O51—C525.9 (3)
N12—B1—N22—C23−117.9 (3)O41—Mo1—O51—C52−92.5 (3)
N32—B1—N22—N21−62.1 (3)N11—Mo1—O51—C52145.0 (3)
N12—B1—N22—N2157.1 (3)N21—Mo1—O51—C52100.6 (3)
N21—N22—C23—C240.6 (3)N31—Mo1—O51—C52−174.5 (3)
B1—N22—C23—C24176.1 (3)Mo1—O51—C52—C532.9 (6)
N21—N22—C23—C27−178.9 (3)Mo1—O51—C52—C57−178.7 (2)
B1—N22—C23—C27−3.4 (5)O51—C52—C53—C54178.7 (4)
N22—C23—C24—C25−0.5 (4)C57—C52—C53—C540.4 (6)
C27—C23—C24—C25179.0 (3)C52—C53—C54—C55−0.8 (6)
N22—N21—C25—C240.2 (3)C53—C54—C55—C561.2 (6)
Mo1—N21—C25—C24179.8 (2)C54—C55—C56—C57−1.2 (5)
N22—N21—C25—C26179.7 (3)C54—C55—C56—C58178.0 (4)
Mo1—N21—C25—C26−0.7 (4)C55—C56—C57—C520.8 (5)
C23—C24—C25—N210.2 (4)C58—C56—C57—C52−178.3 (3)
C23—C24—C25—C26−179.3 (3)O51—C52—C57—C56−178.9 (3)
O41—Mo1—N31—C35−52.1 (2)C53—C52—C57—C56−0.4 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2216).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • McCleverty, J. A., Denti, G., Reynolds, S. J., Drane, A. S., El Murr, N., Rae, A. E., Bailey, N. A., Adams, H. & Smith, J. M. A. (1983). J. Chem. Soc. Dalton Trans. pp. 81–89.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Romańczyk, P. P., Guzik, M. N. & Włodarczyk, A. J. (2007). Polyhedron, 26, 1182–1190.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Włodarczyk, A. J., Romańczyk, P. P., Kurek, S. S., Nitek, W. & McCleverty, J. A. (2008c). Polyhedron, 27, 783–796.
  • Włodarczyk, A. J., Romańczyk, P. P. & Lubera, T. (2008a). Czasop. Techn. Polit. Krak. 1-Ch, pp. 165–170.
  • Włodarczyk, A. J., Romańczyk, P. P., Lubera, T. & Kurek, S. S. (2008b). Electrochem. Commun.10, 1856–1859.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography