PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1258.
Published online 2010 September 15. doi:  10.1107/S1600536810036093
PMCID: PMC2983426

catena-Poly[bis­(μ4-adipato-1:2:1′:2′κ4 O 1:O 1′:O 4:O 4′)bis­(N,N-dimethyl­formamide)-1κO,2κO-dicopper(II)]

Abstract

In the title polymeric complex, [Cu2(C6H8O4)2(C3H7NO)2]n, the carboxyl­ate groups of the approximately U-shaped adipate dianion each bridge a pair of inversion-related, DMF-coordinated copper(II) atoms, generating a ribbon motif that runs along the b axis. The geometry of the copper(II) atom is distorted square-pyramidal; the apical site is occupied by the O atom of the DMF mol­ecule whereas the four basal sites are occupied by carboxyl­ate O atoms.

Related literature

For the crystal structure of diaquaadipatocopper(II), see: Bakalbassis et al. (2001 [triangle]); Zheng et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1258-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C6H8O4)2(C3H7NO)2]
  • M r = 561.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1258-efi1.jpg
  • a = 9.4764 (5) Å
  • b = 8.2618 (5) Å
  • c = 15.0990 (8) Å
  • β = 106.259 (1)°
  • V = 1134.85 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.93 mm−1
  • T = 173 K
  • 0.45 × 0.40 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.477, T max = 0.761
  • 5917 measured reflections
  • 2428 independent reflections
  • 2153 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.072
  • S = 1.03
  • 2428 reflections
  • 147 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036093/xu5027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036093/xu5027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Hunan Medical Technical Secondary School and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Copper adipate furnishes a number of adducts with oxygen- and nitrogen-donor ligands. The parent compound itself exists as dihydrate, with the copper atom in a square-planar environment (Bakalbassis et al., 2001; Zheng et al., 2001). The four-coordinate nature explains the ability of the compound to expand the coordination number of the metal atom. In the present study, the DMF solvent used in the synthesis functions as donor ligand. The DMF adduct is formally the dicopper diadipate bis-adduct (Scheme I). The carboxyl –CO2 ends of the approximately U-shape adipate dianion of polymeric Cu2(C6H8O4)2(C3H7NO)2 each bridges a pair of inversion-related, DMF-coordinated copper atoms (Fig. 1) to generate a ribbon motif that runs along the b-axis of the monoclinic unit cell. The geometry of the copper atom is a square pyramid; the apical site is occupied by the O atom of the DMF molecule whereas the four basal sites are occupied by the O atoms of the carboxyl ends.

Experimental

(1H-Benzimidazol-2-yl)-methanol (0.074 g, 0.5 mmol) was dissolved in a methanol/DMF mixture (v/v 1:1, 20 ml) and to this was added copper nitrate trihydrate (0.241 g, 1 mmol) followed by adipic acid (0.073 g, 0.5 mmol). The mixture was filtered and then set aside. Blue crystals were isolated after two weeks.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of a portion of the ribbon structure of Cu2(C6H8O4)2(C3H7NO)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Cu2(C6H8O4)2(C3H7NO)2]F(000) = 580
Mr = 561.52Dx = 1.643 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4192 reflections
a = 9.4764 (5) Åθ = 2.3–27.0°
b = 8.2618 (5) ŵ = 1.93 mm1
c = 15.0990 (8) ÅT = 173 K
β = 106.259 (1)°Block, blue
V = 1134.85 (11) Å30.45 × 0.40 × 0.15 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer2428 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
graphiteRint = 0.018
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→12
Tmin = 0.477, Tmax = 0.761k = −10→10
5917 measured reflectionsl = −19→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0347P)2 + 1.1165P] where P = (Fo2 + 2Fc2)/3
2428 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.43225 (2)−0.00484 (2)0.564117 (15)0.01597 (9)
O10.52755 (16)0.20568 (17)0.60153 (10)0.0269 (3)
O20.64565 (17)0.21315 (17)0.49265 (10)0.0266 (3)
O30.72585 (15)0.89246 (17)0.52815 (9)0.0242 (3)
O40.60808 (16)0.88250 (19)0.63743 (10)0.0282 (3)
O50.31493 (16)−0.01217 (17)0.66816 (10)0.0240 (3)
N10.12143 (18)0.0799 (2)0.71426 (11)0.0231 (3)
C10.6147 (2)0.2692 (2)0.56190 (13)0.0192 (4)
C20.6893 (2)0.4247 (2)0.60485 (14)0.0217 (4)
H2A0.75160.39980.66780.026*
H2B0.61240.50150.61100.026*
C30.7844 (2)0.5086 (2)0.55190 (14)0.0221 (4)
H3A0.72010.57150.50040.027*
H3B0.83510.42530.52490.027*
C40.8997 (2)0.6224 (2)0.61229 (14)0.0230 (4)
H4A0.97400.55660.65690.028*
H4B0.95040.68020.57260.028*
C50.8366 (2)0.7468 (2)0.66538 (13)0.0218 (4)
H5A0.79910.68960.71180.026*
H5B0.91670.81960.69900.026*
C60.7139 (2)0.8484 (2)0.60538 (12)0.0176 (4)
C70.1952 (2)0.0576 (2)0.65288 (14)0.0238 (4)
H70.15300.09840.59240.029*
C80.1795 (3)0.0257 (3)0.80898 (15)0.0324 (5)
H8A0.2752−0.02610.81660.049*
H8B0.1114−0.05230.82360.049*
H8C0.19110.11870.85060.049*
C9−0.0149 (2)0.1724 (3)0.69183 (16)0.0311 (5)
H9A−0.04360.19980.62610.047*
H9B−0.00030.27200.72850.047*
H9C−0.09250.10740.70580.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01828 (14)0.01576 (14)0.01519 (13)0.00059 (8)0.00683 (10)−0.00014 (8)
O10.0302 (8)0.0256 (7)0.0286 (8)−0.0089 (6)0.0143 (6)−0.0088 (6)
O20.0381 (8)0.0200 (7)0.0264 (7)−0.0063 (6)0.0169 (6)−0.0056 (6)
O30.0232 (7)0.0299 (7)0.0204 (7)0.0058 (6)0.0075 (6)0.0064 (6)
O40.0275 (8)0.0383 (8)0.0212 (7)0.0110 (6)0.0111 (6)0.0085 (6)
O50.0225 (7)0.0303 (8)0.0215 (7)0.0058 (6)0.0100 (6)0.0036 (5)
N10.0221 (8)0.0269 (9)0.0225 (8)0.0027 (7)0.0099 (7)0.0002 (7)
C10.0186 (9)0.0169 (8)0.0206 (9)0.0030 (7)0.0032 (7)0.0001 (7)
C20.0244 (10)0.0186 (9)0.0230 (9)−0.0008 (8)0.0082 (8)−0.0039 (7)
C30.0262 (10)0.0187 (9)0.0227 (9)−0.0004 (7)0.0089 (8)−0.0017 (7)
C40.0190 (9)0.0205 (9)0.0300 (10)0.0017 (7)0.0074 (8)0.0024 (8)
C50.0215 (9)0.0191 (9)0.0214 (9)−0.0002 (7)0.0003 (8)−0.0002 (7)
C60.0186 (9)0.0144 (8)0.0184 (9)−0.0013 (7)0.0030 (7)−0.0015 (7)
C70.0282 (10)0.0250 (10)0.0213 (9)0.0016 (8)0.0122 (8)0.0024 (8)
C80.0252 (11)0.0518 (14)0.0216 (10)0.0005 (10)0.0092 (9)0.0013 (9)
C90.0284 (11)0.0294 (11)0.0387 (12)0.0063 (9)0.0150 (10)−0.0017 (9)

Geometric parameters (Å, °)

Cu1—O11.9683 (14)C2—H2B0.9900
Cu1—O2i1.9716 (14)C3—C41.533 (3)
Cu1—O3ii1.9695 (13)C3—H3A0.9900
Cu1—O4iii1.9584 (14)C3—H3B0.9900
Cu1—O52.1646 (15)C4—C51.525 (3)
Cu1—Cu1i2.6069 (4)C4—H4A0.9900
O1—C11.262 (2)C4—H4B0.9900
O2—C11.251 (2)C5—C61.512 (3)
O3—C61.256 (2)C5—H5A0.9900
O4—C61.262 (2)C5—H5B0.9900
O5—C71.235 (3)C7—H70.9500
N1—C71.321 (3)C8—H8A0.9800
N1—C81.452 (3)C8—H8B0.9800
N1—C91.457 (3)C8—H8C0.9800
C1—C21.521 (3)C9—H9A0.9800
C2—C31.529 (3)C9—H9B0.9800
C2—H2A0.9900C9—H9C0.9800
O4iii—Cu1—O190.48 (7)C4—C3—H3A108.9
O4iii—Cu1—O3ii169.19 (6)C2—C3—H3B108.9
O1—Cu1—O3ii89.05 (6)C4—C3—H3B108.9
O4iii—Cu1—O2i89.23 (7)H3A—C3—H3B107.8
O1—Cu1—O2i169.11 (6)C5—C4—C3114.04 (16)
O3ii—Cu1—O2i89.19 (6)C5—C4—H4A108.7
O4iii—Cu1—O596.03 (6)C3—C4—H4A108.7
O1—Cu1—O595.97 (6)C5—C4—H4B108.7
O3ii—Cu1—O594.76 (6)C3—C4—H4B108.7
O2i—Cu1—O594.88 (6)H4A—C4—H4B107.6
O4iii—Cu1—Cu1i85.20 (4)C6—C5—C4114.07 (16)
O1—Cu1—Cu1i84.51 (4)C6—C5—H5A108.7
O3ii—Cu1—Cu1i84.00 (4)C4—C5—H5A108.7
O2i—Cu1—Cu1i84.62 (4)C6—C5—H5B108.7
O5—Cu1—Cu1i178.67 (4)C4—C5—H5B108.7
C1—O1—Cu1122.68 (12)H5A—C5—H5B107.6
C1—O2—Cu1i122.64 (13)O3—C6—O4125.38 (18)
C6—O3—Cu1ii123.01 (13)O3—C6—C5117.60 (17)
C6—O4—Cu1iv122.10 (12)O4—C6—C5117.02 (16)
C7—O5—Cu1118.87 (13)O5—C7—N1124.96 (19)
C7—N1—C8121.24 (17)O5—C7—H7117.5
C7—N1—C9121.29 (18)N1—C7—H7117.5
C8—N1—C9117.24 (17)N1—C8—H8A109.5
O2—C1—O1125.47 (18)N1—C8—H8B109.5
O2—C1—C2118.63 (17)H8A—C8—H8B109.5
O1—C1—C2115.89 (16)N1—C8—H8C109.5
C1—C2—C3115.59 (16)H8A—C8—H8C109.5
C1—C2—H2A108.4H8B—C8—H8C109.5
C3—C2—H2A108.4N1—C9—H9A109.5
C1—C2—H2B108.4N1—C9—H9B109.5
C3—C2—H2B108.4H9A—C9—H9B109.5
H2A—C2—H2B107.4N1—C9—H9C109.5
C2—C3—C4113.16 (16)H9A—C9—H9C109.5
C2—C3—H3A108.9H9B—C9—H9C109.5
O4iii—Cu1—O1—C182.83 (16)O1—C1—C2—C3−175.00 (17)
O3ii—Cu1—O1—C1−86.36 (16)C1—C2—C3—C4−158.25 (16)
O2i—Cu1—O1—C1−5.6 (4)C2—C3—C4—C5−53.1 (2)
O5—Cu1—O1—C1178.95 (15)C3—C4—C5—C6−54.7 (2)
Cu1i—Cu1—O1—C1−2.30 (15)Cu1ii—O3—C6—O4−7.1 (3)
O4iii—Cu1—O5—C7175.47 (15)Cu1ii—O3—C6—C5173.25 (12)
O1—Cu1—O5—C784.35 (16)Cu1iv—O4—C6—O36.2 (3)
O3ii—Cu1—O5—C7−5.19 (16)Cu1iv—O4—C6—C5−174.09 (12)
O2i—Cu1—O5—C7−94.78 (16)C4—C5—C6—O3−38.7 (2)
Cu1i—O2—C1—O1−2.9 (3)C4—C5—C6—O4141.63 (18)
Cu1i—O2—C1—C2175.51 (12)Cu1—O5—C7—N1−171.07 (16)
Cu1—O1—C1—O23.8 (3)C8—N1—C7—O51.7 (3)
Cu1—O1—C1—C2−174.68 (12)C9—N1—C7—O5176.2 (2)
O2—C1—C2—C36.4 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5027).

References

  • Bakalbassis, E. G., Korabik, M., Michailides, A., Mrozinski, J., Raptopoulou, C., Skoulika, S., Terzis, A. & Tsaousis, D. (2001). J. Chem. Soc. Dalton Trans. pp. 850–857.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Zheng, Y.-Q., Pan, A.-Y. & Lin, J.-L. (2001). Z. Kristallogr. New Cryst. Struct.216, 263–264.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography