PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2692.
Published online 2010 September 30. doi:  10.1107/S1600536810038365
PMCID: PMC2983425

N′-(2-Hy­droxy-1,2-diphenyl­ethyl­idene)benzohydrazide

Abstract

In the title compound, C21H18N2O2, the amino group is involved in an intra­molecular N—H(...)O hydrogen bond. The rings make dihedral angles of 37.9 (2), 64.4 (2) and 83.6 (2)°. In the crystal, inter­molecular O—H(...)N and O—H(...)O hydrogen bonds link the mol­ecules into chains running along [100].

Related literature

For related structures, see: Fun et al.(2008 [triangle]); Nie (2008 [triangle]); Seijas et al. (2007 [triangle]). For general background to the biological activity of Schiff bases and their metal complexes, see: Chakraborty et al. (1996 [triangle]); Jeewoth et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2692-scheme1.jpg

Experimental

Crystal data

  • C21H18N2O2
  • M r = 330.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2692-efi1.jpg
  • a = 7.7318 (8) Å
  • b = 11.0653 (12) Å
  • c = 19.725 (2) Å
  • V = 1687.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.41 × 0.16 × 0.13 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.966, T max = 0.989
  • 7865 measured reflections
  • 1729 independent reflections
  • 1051 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.097
  • S = 1.07
  • 1729 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038365/cv2764sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038365/cv2764Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges financial support by the Foundation of Binzhou University (grant No. BZXYQNLG­2005013).

supplementary crystallographic information

Comment

Schiff bases and their metal complexes were reported to exhibit fungicidal, bactericidal, antiviral, and antitubercular activity (Chakraborty et al., 1996; Jeewoth et al., 1999). Herewith we present the title compound (I), which is a new Shiff base compound.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in similar compounds (Nie et al., 2008; Fun et al., 2008) The C=N (C8=N2) bond length in the molecule is 1.287 (3) Å. Two benzene rings - C2—C7 and C16—C21, respectively - form a dihedral angle of 37.94 (7) °. The amino group is involved in formation of intramolecular N—H···O hydrogen bond (Table 1), while intermolecular O—H···N and O—H···O hydrogen bonds (Table 1) link the molecules into chains running in direction [100].

Experimental

Benzoin (5 mmol), benzohydrazide (5 mmol) and methanol (10 ml) were mixed in 50 ml flask. After stirring for 2 h at 373 K, the resulting mixture was recrystalized from methanol, affording the title compound as a colorless crystalline solid. Elemental analysis: calculated for C21H18N2O2: C 76.34, H 5.49, N 8.48%; found: C 76.21, H 5.56, N 8.54%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86, O—H= 0.82 and C—H = 0.93–0.98 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2U-1.5Ueq of the parent atom. Due to the absence of any significant anomalous scatterers in the molecule, the 1239 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.
lThe molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C21H18N2O2Dx = 1.300 Mg m3
Mr = 330.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1315 reflections
a = 7.7318 (8) Åθ = 2.8–19.7°
b = 11.0653 (12) ŵ = 0.09 mm1
c = 19.725 (2) ÅT = 298 K
V = 1687.5 (3) Å3Needle, colourless
Z = 40.41 × 0.16 × 0.13 mm
F(000) = 696

Data collection

Bruker SMART APEX CCD area-detector diffractometer1729 independent reflections
Radiation source: fine-focus sealed tube1051 reflections with I > 2σ(I)
graphiteRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)h = −9→8
Tmin = 0.966, Tmax = 0.989k = −13→13
7865 measured reflectionsl = −10→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0315P)2 + 0.2666P] where P = (Fo2 + 2Fc2)/3
1729 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.6095 (4)0.7285 (3)0.07224 (14)0.0466 (9)
H10.57110.65820.08330.056*
N20.6267 (4)0.7612 (3)0.00542 (16)0.0445 (9)
O10.7060 (4)0.9121 (2)0.10546 (13)0.0550 (8)
O20.3956 (3)0.5524 (2)0.02563 (13)0.0547 (8)
H20.31610.59390.01100.082*
C10.6551 (5)0.8107 (4)0.1207 (2)0.0441 (10)
C20.6408 (5)0.7712 (3)0.19238 (19)0.0424 (10)
C30.5837 (6)0.6586 (4)0.2127 (2)0.0538 (12)
H30.54850.60250.18050.065*
C40.5787 (6)0.6288 (4)0.2806 (2)0.0634 (13)
H40.53850.55310.29390.076*
C50.6324 (6)0.7097 (4)0.3285 (2)0.0638 (13)
H50.63090.68900.37420.077*
C60.6885 (7)0.8213 (4)0.3087 (2)0.0666 (14)
H60.72300.87740.34100.080*
C70.6939 (5)0.8510 (4)0.2408 (2)0.0543 (11)
H70.73440.92670.22790.065*
C80.5919 (5)0.6798 (3)−0.03926 (18)0.0416 (10)
C90.5351 (5)0.5513 (3)−0.0227 (2)0.0443 (10)
H90.49360.5132−0.06450.053*
C100.6779 (5)0.4743 (3)0.00625 (18)0.0404 (10)
C110.8474 (5)0.4869 (3)−0.0146 (2)0.0513 (11)
H110.87590.5474−0.04530.062*
C120.9764 (6)0.4104 (4)0.0096 (2)0.0650 (13)
H121.09000.4197−0.00500.078*
C130.9345 (7)0.3213 (4)0.0551 (2)0.0692 (14)
H131.01990.26970.07140.083*
C140.7678 (7)0.3084 (4)0.0766 (3)0.0781 (15)
H140.74010.24840.10770.094*
C150.6399 (6)0.3839 (4)0.0523 (2)0.0622 (12)
H150.52670.37390.06720.075*
C160.6030 (5)0.7188 (3)−0.11073 (19)0.0414 (10)
C170.6508 (6)0.6403 (4)−0.16168 (19)0.0547 (11)
H170.67670.5604−0.15120.066*
C180.6607 (6)0.6793 (4)−0.2285 (2)0.0632 (13)
H180.69500.6262−0.26240.076*
C190.6194 (6)0.7971 (4)−0.2443 (2)0.0664 (14)
H190.62520.8235−0.28900.080*
C200.5702 (6)0.8749 (4)−0.1946 (2)0.0565 (12)
H200.54150.9543−0.20530.068*
C210.5628 (5)0.8365 (3)−0.1283 (2)0.0511 (11)
H210.53010.8907−0.09470.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.062 (3)0.0403 (18)0.038 (2)−0.0013 (18)−0.0013 (18)0.0009 (16)
N20.053 (2)0.0448 (18)0.0352 (18)0.0040 (18)0.0059 (17)0.0001 (15)
O10.066 (2)0.0506 (16)0.0487 (17)−0.0063 (15)−0.0034 (16)0.0039 (15)
O20.0445 (17)0.0555 (16)0.0642 (18)−0.0006 (14)0.0037 (16)0.0091 (14)
C10.040 (2)0.045 (3)0.047 (3)0.007 (2)0.001 (2)0.001 (2)
C20.040 (3)0.050 (2)0.037 (2)0.001 (2)0.000 (2)0.005 (2)
C30.064 (3)0.050 (3)0.048 (3)−0.004 (2)−0.004 (2)0.000 (2)
C40.074 (4)0.064 (3)0.052 (3)−0.009 (3)−0.001 (3)0.015 (3)
C50.073 (4)0.072 (3)0.047 (3)0.005 (3)−0.001 (3)0.012 (3)
C60.090 (4)0.064 (3)0.045 (3)0.000 (3)−0.003 (3)−0.005 (2)
C70.060 (3)0.054 (3)0.050 (3)−0.002 (2)−0.005 (2)0.000 (2)
C80.046 (3)0.039 (2)0.040 (2)0.003 (2)−0.001 (2)−0.002 (2)
C90.043 (2)0.047 (2)0.043 (2)−0.005 (2)−0.002 (2)0.000 (2)
C100.043 (2)0.041 (2)0.037 (2)−0.0017 (19)−0.006 (2)−0.004 (2)
C110.051 (3)0.045 (2)0.057 (3)−0.003 (2)0.000 (3)−0.002 (2)
C120.056 (3)0.059 (3)0.080 (3)0.002 (3)−0.012 (3)−0.012 (3)
C130.067 (4)0.063 (3)0.078 (3)0.015 (3)−0.029 (3)−0.003 (3)
C140.080 (4)0.079 (4)0.075 (3)0.006 (3)−0.013 (3)0.028 (3)
C150.059 (3)0.070 (3)0.057 (3)0.001 (3)−0.002 (3)0.018 (3)
C160.042 (3)0.043 (2)0.040 (2)−0.001 (2)0.004 (2)0.000 (2)
C170.064 (3)0.051 (2)0.049 (2)0.004 (3)0.002 (2)−0.002 (2)
C180.075 (3)0.067 (3)0.047 (3)−0.014 (3)0.007 (3)−0.005 (3)
C190.070 (3)0.084 (4)0.045 (3)−0.015 (3)0.000 (3)0.008 (3)
C200.064 (3)0.056 (3)0.049 (3)−0.006 (3)0.002 (2)0.015 (2)
C210.057 (3)0.049 (3)0.047 (3)−0.003 (2)0.004 (2)−0.003 (2)

Geometric parameters (Å, °)

N1—C11.366 (4)C10—C111.380 (5)
N1—N21.373 (4)C10—C151.383 (5)
N1—H10.8600C11—C121.392 (5)
N2—C81.288 (4)C11—H110.9300
O1—C11.226 (4)C12—C131.372 (6)
O2—C91.439 (4)C12—H120.9300
O2—H20.8200C13—C141.365 (7)
C1—C21.485 (5)C13—H130.9300
C2—C71.365 (5)C14—C151.379 (6)
C2—C31.381 (5)C14—H140.9300
C3—C41.380 (5)C15—H150.9300
C3—H30.9300C16—C171.379 (5)
C4—C51.366 (5)C16—C211.383 (5)
C4—H40.9300C17—C181.389 (5)
C5—C61.366 (6)C17—H170.9300
C5—H50.9300C18—C191.378 (6)
C6—C71.378 (5)C18—H180.9300
C6—H60.9300C19—C201.359 (5)
C7—H70.9300C19—H190.9300
C8—C161.477 (5)C20—C211.375 (5)
C8—C91.524 (5)C20—H200.9300
C9—C101.507 (5)C21—H210.9300
C9—H90.9800
C1—N1—N2118.1 (3)C11—C10—C9121.7 (3)
C1—N1—H1121.0C15—C10—C9120.1 (4)
N2—N1—H1121.0C10—C11—C12121.1 (4)
C8—N2—N1116.9 (3)C10—C11—H11119.4
C9—O2—H2109.5C12—C11—H11119.4
O1—C1—N1121.4 (4)C13—C12—C11119.4 (4)
O1—C1—C2121.8 (4)C13—C12—H12120.3
N1—C1—C2116.8 (4)C11—C12—H12120.3
C7—C2—C3118.4 (4)C14—C13—C12120.1 (4)
C7—C2—C1117.0 (3)C14—C13—H13120.0
C3—C2—C1124.5 (4)C12—C13—H13120.0
C4—C3—C2120.4 (4)C13—C14—C15120.4 (4)
C4—C3—H3119.8C13—C14—H14119.8
C2—C3—H3119.8C15—C14—H14119.8
C5—C4—C3120.3 (4)C14—C15—C10120.9 (4)
C5—C4—H4119.8C14—C15—H15119.6
C3—C4—H4119.8C10—C15—H15119.6
C4—C5—C6119.5 (4)C17—C16—C21118.1 (4)
C4—C5—H5120.3C17—C16—C8121.8 (3)
C6—C5—H5120.3C21—C16—C8120.1 (3)
C5—C6—C7120.2 (4)C16—C17—C18120.7 (4)
C5—C6—H6119.9C16—C17—H17119.7
C7—C6—H6119.9C18—C17—H17119.7
C2—C7—C6121.1 (4)C19—C18—C17119.7 (4)
C2—C7—H7119.5C19—C18—H18120.1
C6—C7—H7119.5C17—C18—H18120.1
N2—C8—C16115.9 (3)C20—C19—C18120.1 (4)
N2—C8—C9124.4 (3)C20—C19—H19120.0
C16—C8—C9119.6 (3)C18—C19—H19120.0
O2—C9—C10107.7 (3)C19—C20—C21120.1 (4)
O2—C9—C8110.5 (3)C19—C20—H20120.0
C10—C9—C8113.5 (3)C21—C20—H20120.0
O2—C9—H9108.4C20—C21—C16121.3 (4)
C10—C9—H9108.4C20—C21—H21119.3
C8—C9—H9108.4C16—C21—H21119.3
C11—C10—C15118.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.452.998 (4)125
O2—H2···N2i0.822.202.992 (4)164
N1—H1···O20.862.122.715 (4)126

Symmetry codes: (i) x−1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2764).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc.73, 191–195.
  • Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [PMC free article] [PubMed]
  • Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem.24, 445–448.
  • Nie, Y. (2008). Acta Cryst. E64, o471. [PMC free article] [PubMed]
  • Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o303–o305. [PubMed]
  • Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography