PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2672.
Published online 2010 September 30. doi:  10.1107/S1600536810038420
PMCID: PMC2983421

2-{[(E)-1,3-Benzodioxol-5-yl]methyl­idene­amino}­benzoic acid

Abstract

In the title compound, C15H11NO4, the dihedral angle between the aromatic rings is 23.8 (2)° and an intra­molecular O—H(...)N hydrogen bond generates an S(6) ring. In the crystal, C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For a related structure, see: Yang et al. (2007 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2672-scheme1.jpg

Experimental

Crystal data

  • C15H11NO4
  • M r = 269.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2672-efi1.jpg
  • a = 22.884 (2) Å
  • b = 3.9402 (4) Å
  • c = 13.5696 (13) Å
  • V = 1223.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.28 × 0.14 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.980, T max = 0.988
  • 28104 measured reflections
  • 1152 independent reflections
  • 925 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.122
  • S = 1.12
  • 1152 reflections
  • 184 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038420/hb5653sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038420/hb5653Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) is being reported as a part of our on going project related to synthesize various Schiff bases of pipronal and anthranilic acid with different anilines and aldehydes, respectively. The title compound will be utilized for preparing the metal complexes.

The crystal structure of (II) i.e., (E)-4-methoxy-N-(3,4-methylenedioxybenzylidene)aniline (Yang et al., 2007) has been published which are related to the title compound.

In the title compound, the anthranilic acid moiety A (C1—C7/N1/O1/O2) and pipronal group B (C8—C15/O3/O4) are almost planar with r. m. s. deviations of 0.0105 and 0.0112 Å, respectively. The dihedral angle between A/B is 23.78 (9)°. The intramolecular H-bonding of O—H···N type (Table 1, Fig. 1) complete an S(6) ring motif (Bernstein et al., 1995). The title compound consist of three dimensional zigzag polymeric network (Fig. 2) due to H-bondings of C—H···O type (Table 2). There does not exist any C—H···π interaction.

Experimental

Equimolar quantities of anthranilic acid and pipronal were refluxed in methanol for 30 min resulting in orange yellow solution. The solution was kept at room temperature which affoarded orange yellow needles of (I) after a week.

Refinement

In the absence of significant anomalous scattering, all Friedal pairs were merged.

The coordinates of hydroxy H-atom were refined. The carbon H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, O), where x = 1.2 for all H-atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted line represent the intramolecular H-bonding.
Fig. 2.
The partial packing of (I), which shows that molecules form polymeric chains.

Crystal data

C15H11NO4F(000) = 560
Mr = 269.25Dx = 1.462 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 925 reflections
a = 22.884 (2) Åθ = 2.3–25.2°
b = 3.9402 (4) ŵ = 0.11 mm1
c = 13.5696 (13) ÅT = 296 K
V = 1223.5 (2) Å3Needle, orange yellow
Z = 40.28 × 0.14 × 0.10 mm

Data collection

Bruker Kappa APEXII CCD diffractometer1152 independent reflections
Radiation source: fine-focus sealed tube925 reflections with I > 2σ(I)
graphiteRint = 0.079
Detector resolution: 8.20 pixels mm-1θmax = 25.2°, θmin = 2.3°
ω scansh = −27→27
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −4→4
Tmin = 0.980, Tmax = 0.988l = −16→16
28104 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0704P)2 + 0.1607P] where P = (Fo2 + 2Fc2)/3
1152 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = −0.21 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.51893 (16)0.1333 (11)0.1270 (2)0.0783 (14)
O20.60847 (16)0.3309 (12)0.1082 (3)0.0870 (16)
O30.28294 (13)−0.2221 (9)0.0939 (2)0.0644 (11)
O40.22350 (12)−0.5110 (9)0.2031 (3)0.0615 (11)
N10.47183 (15)0.1225 (8)0.2968 (3)0.0477 (11)
C10.5677 (2)0.2642 (12)0.1623 (3)0.0597 (17)
C20.56974 (18)0.3361 (10)0.2714 (3)0.0453 (12)
C30.62059 (19)0.4809 (11)0.3079 (4)0.0557 (16)
C40.6268 (2)0.5551 (12)0.4064 (4)0.0603 (17)
C50.5811 (2)0.4898 (11)0.4697 (4)0.0613 (17)
C60.53019 (19)0.3494 (11)0.4360 (3)0.0550 (16)
C70.52366 (16)0.2630 (10)0.3363 (3)0.0427 (12)
C80.43348 (17)−0.0263 (9)0.3505 (3)0.0487 (12)
C90.37893 (17)−0.1565 (9)0.3122 (3)0.0453 (12)
C100.36230 (17)−0.1111 (11)0.2122 (3)0.0480 (12)
C110.30981 (17)−0.2372 (11)0.1848 (3)0.0463 (12)
C120.27312 (17)−0.4075 (11)0.2501 (3)0.0477 (14)
C130.28753 (18)−0.4521 (11)0.3468 (4)0.0520 (14)
C140.34183 (19)−0.3234 (11)0.3770 (3)0.0520 (14)
C150.2282 (2)−0.3962 (14)0.1039 (4)0.0650 (17)
H10.491 (3)0.140 (15)0.166 (5)0.0937*
H30.651120.528800.264870.0668*
H40.661400.648310.430000.0722*
H50.584890.541760.536240.0734*
H60.499570.310780.479610.0655*
H80.44114−0.051850.417340.0582*
H100.386440.000510.167630.0575*
H130.26261−0.562290.390430.0623*
H140.35328−0.350790.442310.0623*
H15A0.19620−0.244110.088410.0780*
H15B0.22671−0.587490.059020.0780*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.071 (2)0.130 (3)0.034 (2)−0.009 (2)−0.0057 (16)−0.008 (2)
O20.074 (2)0.143 (4)0.044 (2)−0.012 (2)0.0141 (19)−0.003 (2)
O30.0587 (18)0.094 (2)0.0405 (18)−0.0102 (18)−0.0039 (15)0.0052 (17)
O40.0574 (17)0.080 (2)0.047 (2)−0.0098 (16)−0.0032 (15)0.0034 (18)
N10.0472 (19)0.055 (2)0.041 (2)0.0002 (16)0.0019 (17)0.0018 (17)
C10.055 (3)0.079 (3)0.045 (3)0.000 (2)−0.002 (2)0.004 (2)
C20.052 (2)0.049 (2)0.035 (2)0.0056 (19)0.0013 (18)0.0029 (18)
C30.053 (2)0.065 (3)0.049 (3)−0.002 (2)0.002 (2)−0.001 (2)
C40.057 (3)0.068 (3)0.056 (3)−0.007 (2)−0.011 (2)−0.002 (2)
C50.079 (3)0.062 (3)0.043 (3)−0.008 (3)−0.007 (3)−0.008 (2)
C60.063 (3)0.059 (2)0.043 (3)−0.003 (2)0.004 (2)−0.002 (2)
C70.048 (2)0.044 (2)0.036 (2)0.0044 (18)−0.0005 (18)0.0011 (16)
C80.055 (2)0.049 (2)0.042 (2)0.007 (2)0.000 (2)0.002 (2)
C90.048 (2)0.047 (2)0.041 (2)0.0048 (18)0.0014 (19)0.0020 (18)
C100.050 (2)0.054 (2)0.040 (2)0.0019 (19)0.006 (2)0.0058 (19)
C110.052 (2)0.054 (2)0.033 (2)0.009 (2)0.0016 (19)−0.0006 (19)
C120.045 (2)0.055 (2)0.043 (3)−0.0001 (19)0.0020 (19)−0.001 (2)
C130.056 (2)0.055 (2)0.045 (3)0.000 (2)0.006 (2)0.006 (2)
C140.056 (2)0.054 (2)0.046 (3)0.008 (2)0.006 (2)0.010 (2)
C150.067 (3)0.082 (3)0.046 (3)−0.003 (3)−0.005 (2)0.006 (2)

Geometric parameters (Å, °)

O1—C11.320 (6)C9—C141.388 (6)
O2—C11.216 (6)C9—C101.421 (6)
O3—C111.380 (5)C10—C111.352 (6)
O3—C151.435 (6)C11—C121.393 (6)
O4—C121.365 (5)C12—C131.364 (7)
O4—C151.424 (7)C13—C141.403 (6)
O1—H10.83 (7)C3—H30.9300
N1—C71.414 (5)C4—H40.9300
N1—C81.283 (5)C5—H50.9300
C1—C21.508 (6)C6—H60.9300
C2—C71.404 (6)C8—H80.9300
C2—C31.387 (6)C10—H100.9300
C3—C41.376 (8)C13—H130.9300
C4—C51.378 (7)C14—H140.9300
C5—C61.368 (6)C15—H15A0.9700
C6—C71.403 (6)C15—H15B0.9700
C8—C91.446 (5)
C11—O3—C15106.5 (3)C11—C12—C13121.9 (4)
C12—O4—C15106.5 (3)O4—C12—C11110.4 (4)
C1—O1—H1114 (5)C12—C13—C14116.6 (4)
C7—N1—C8122.5 (4)C9—C14—C13121.9 (4)
O1—C1—O2121.0 (4)O3—C15—O4107.9 (4)
O1—C1—C2117.1 (4)C2—C3—H3119.00
O2—C1—C2121.9 (4)C4—C3—H3119.00
C1—C2—C3117.0 (4)C3—C4—H4120.00
C1—C2—C7123.7 (4)C5—C4—H4120.00
C3—C2—C7119.4 (4)C4—C5—H5120.00
C2—C3—C4121.4 (4)C6—C5—H5120.00
C3—C4—C5119.2 (4)C5—C6—H6120.00
C4—C5—C6120.9 (5)C7—C6—H6120.00
C5—C6—C7120.7 (4)N1—C8—H8118.00
N1—C7—C2118.2 (4)C9—C8—H8118.00
N1—C7—C6123.4 (4)C9—C10—H10121.00
C2—C7—C6118.4 (4)C11—C10—H10122.00
N1—C8—C9123.3 (4)C12—C13—H13122.00
C8—C9—C14117.9 (4)C14—C13—H13122.00
C10—C9—C14120.1 (4)C9—C14—H14119.00
C8—C9—C10122.0 (4)C13—C14—H14119.00
C9—C10—C11117.0 (4)O3—C15—H15A110.00
O3—C11—C10128.8 (4)O3—C15—H15B110.00
O3—C11—C12108.7 (3)O4—C15—H15A110.00
C10—C11—C12122.5 (4)O4—C15—H15B110.00
O4—C12—C13127.7 (4)H15A—C15—H15B109.00
C15—O3—C11—C10179.6 (5)C3—C4—C5—C60.7 (7)
C15—O3—C11—C12−1.2 (5)C4—C5—C6—C71.1 (7)
C11—O3—C15—O40.5 (5)C5—C6—C7—N1−178.9 (4)
C15—O4—C12—C11−1.1 (5)C5—C6—C7—C2−2.4 (6)
C15—O4—C12—C13178.3 (5)N1—C8—C9—C10−3.7 (6)
C12—O4—C15—O30.4 (5)N1—C8—C9—C14177.8 (4)
C8—N1—C7—C2162.9 (4)C8—C9—C10—C11−178.7 (4)
C8—N1—C7—C6−20.6 (6)C14—C9—C10—C11−0.2 (6)
C7—N1—C8—C9176.8 (3)C8—C9—C14—C13178.7 (4)
O1—C1—C2—C3−178.6 (4)C10—C9—C14—C130.2 (6)
O1—C1—C2—C71.8 (6)C9—C10—C11—O3178.6 (4)
O2—C1—C2—C3−0.4 (7)C9—C10—C11—C12−0.5 (6)
O2—C1—C2—C7−180.0 (5)O3—C11—C12—O41.5 (5)
C1—C2—C3—C4−179.8 (4)O3—C11—C12—C13−178.0 (4)
C7—C2—C3—C4−0.1 (6)C10—C11—C12—O4−179.3 (4)
C1—C2—C7—N1−1.8 (6)C10—C11—C12—C131.3 (7)
C1—C2—C7—C6−178.5 (4)O4—C12—C13—C14179.4 (4)
C3—C2—C7—N1178.6 (4)C11—C12—C13—C14−1.2 (6)
C3—C2—C7—C61.9 (6)C12—C13—C14—C90.5 (6)
C2—C3—C4—C5−1.2 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (7)1.83 (7)2.544 (5)143 (7)
C14—H14···O2i0.932.423.337 (6)170
C15—H15A···O2ii0.972.603.532 (6)162

Symmetry codes: (i) −x+1, −y, z+1/2; (ii) x−1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5653).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yang, S.-P., Han, L.-J., Wang, D.-Q. & Yu, Z.-Q. (2007). Acta Cryst. E63, o4098.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography