PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2607–o2608.
Published online 2010 September 25. doi:  10.1107/S1600536810036627
PMCID: PMC2983419

tert-Butyl N-[(11-exo-benzyl­oxy­carbonyl-8-oxopenta­cyclo­[5.4.0.02,6.03,10.05,9]undecane-11-endo-yloxy)carbon­yl­methyl]carbamate

Abstract

The structure of the title compound, C26H29NO7, at 173 K has an inter­molecular N—H(...)O hydrogen bond. This is one of the few examples where a mono-ketone penta­cyclo­undecane (PCU) mol­ecule exibits hydrogen bonding in the solid state. The dihedral angles of the amide and ester groups are normal and unaffected by the cage structure. A longer than normal C—C bond [1.571 (4) Å] was found within the cage structure.

Related literature

For examples of cage structures with C—C bonds lengths that differ from normal, see: Marchand (1989 [triangle]); Kruger et al. (2006 [triangle]). For examples of crystal structures of mono-ketone PCU mol­ecules bearing heteroatoms, see: Watson et al. (2000 [triangle]); Flippen-Anderson et al. (1991 [triangle]); Liu et al. (2001 [triangle]). For the synthesis of the precursors, see: Martins et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2607-scheme1.jpg

Experimental

Crystal data

  • C26H29NO7
  • M r = 467.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2607-efi1.jpg
  • a = 9.7260 (2) Å
  • b = 27.5398 (7) Å
  • c = 9.3500 (2) Å
  • β = 107.679 (1)°
  • V = 2386.14 (9) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.78 mm−1
  • T = 173 K
  • 0.24 × 0.22 × 0.19 mm

Data collection

  • Bruker Kappa DUO APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.694, T max = 0.753
  • 8919 measured reflections
  • 3948 independent reflections
  • 3802 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.100
  • S = 1.07
  • 3948 reflections
  • 311 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.18 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1760 Friedel pairs
  • Flack parameter: 0.00 (18)

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036627/om2360sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036627/om2360Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank Dr Hong Su (University of Capetown) for the data collection and structure refinement.

supplementary crystallographic information

Comment

Pentacycloundecane (PCU) derivatives have been reported in a wide range of chemical fields (Marchand, 1989). We have reported the structures of a number of PCU derivatives including a mono-ketone ethylene acetal (Kruger et al., 2006). Previous examples of this group of mono-ketone molecules have included crown ether (Watson et al., 2000), nitro derivatives (Flippen-Anderson et al., 1991) and benzylic amines (Liu et al., 2001). The title compound (Fig. 1) is a rare example of a monoketone PCU with an intermolecular hydrogen bonding interaction and also features a PCU cage ester bond (Watson et al., 2000). The intermolecular N1—H···O1 bond interaction (2.882 Å) holds the structure in interdigitated rows. The intermolecular distances between the ring centroids in the a axis direction of 5.641–7.710 Å, suggests that there is no π-stacking interaction between parallel molecules (Fig. 2).

Experimental

5-Hydroxy-4-oxahexacyclo[5.4.0.02,6.03,10.05,9]dodecane-3-carboxybenzylester (1.0 g, 3.2 mmol) (Martins et al., 1993) was dissolved in dichloromethane (15 ml) and reacted, under stirring, with BOC-glycine (1.2 g, 6.4 mmol), diisopropylcarbodiimide (0.7 ml, 6.4 mmol), and DMAP (0.04 g, 0.32 mmol) overnight at ambient temperature. The resulting solution was washed with HCl (0.1 N) and water and then extracted with ethyl acetate. The organic layer was dried Na2SO4, filtered, and concentrated under vacuum. The product was isolated by silica flash column chromatography (15% ethyl acetate in hexane) to give the product, (0.6 g, 60% yield). Crystallization of the product was carried out by dissolving the product in 5 ml a solvent mixture of ethyl acetate and hexane (1:5) at 22 °C.

1H NMR (CDCl3, 400 MHz) δ p.p.m.: 1.42 (9.0H, s), 1.53 (1.0H, d, J=11.17 Hz), 1.72 (1.0H, s), 1.84 (1.0H, d, J=11.25 Hz), 2.49 (2.0H, m, J=2.21 Hz), 2.58 (1.0H, d, J=4.04 Hz), 2.63 (1.0H, d, J=3.72 Hz), 2.81 (1.0H, m, J=5.01 Hz), 2.99 (1.0H, q, J=3.19 Hz), 3.05 (1.0H, d, J=6.92 Hz), 3.59 (1.0H, t, J=7.06 Hz), 3.83 (2.0H, m, J=9.47 Hz), 4.85 (1.0H, s), 5.12 (2.0H, d, J=5.32 Hz), 7.28–7.34 (5.0H, m, J=4.99 Hz).

13C NMR (CDCl3, 100 MHz) δ p.p.m.: 28.32 (s), 36.25 (s), 38.15 (s), 40.54 (s), 41.50 (s), 41.93 (s), 42.35 (s), 43.15 (s), 43.92 (s), 50.17 (s), 54.33 (s), 67.42 (s), 79.87 (s), 84.66 (s), 128.43 (t, J=20.32 Hz), 135.10 (s), 155.41 (s), 169.43 (d, J=23.32 Hz), 214.23 (s)

IR (neat) Vmax cm-1:3373.08, 2973.02, 1710.33, 1518.09, 1366.27, 1268.62, 1150.16, 1116.67, 1061.14, 743.63, 697.37.

HR ESI m/z: calcd for C26H29NO7 [M+H]+: 490.1826 found 490.1823.

Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except H1N on N1, were positioned geometrically with C—H = 0.95 - 1.00 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 - 1.5 Ueq (C). The hydrogen atom H1N was located in a difference electron density maps and refined with simple bond length constraints.

Figures

Fig. 1.
Molecular structure of the title compound showing the numbering scheme. All non-hydrogen atoms are shown as ellipsoids with probability level of 30%.
Fig. 2.
Partial projection viewed along [100]. All hydrogen atoms except the hydrogen H1N on N1 are omitted. The hydrogen bonds are shown as dotted lines.

Crystal data

C26H29NO7F(000) = 992
Mr = 467.50Dx = 1.301 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54178 Å
a = 9.7260 (2) ÅCell parameters from 8919 reflections
b = 27.5398 (7) Åθ = 5.9–68.1°
c = 9.3500 (2) ŵ = 0.78 mm1
β = 107.679 (1)°T = 173 K
V = 2386.14 (9) Å3Block, colourless
Z = 40.24 × 0.22 × 0.19 mm

Data collection

Bruker Kappa DUO APEXII diffractometer3948 independent reflections
Radiation source: fine-focus sealed tube3802 reflections with I > 2σ(I)
graphiteRint = 0.024
0.5° [var phi] scans and ω scansθmax = 68.1°, θmin = 5.9°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −11→11
Tmin = 0.694, Tmax = 0.753k = −30→32
8919 measured reflectionsl = −11→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100w = 1/[σ2(Fo2) + (0.0509P)2 + 1.0452P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3948 reflectionsΔρmax = 0.21 e Å3
311 parametersΔρmin = −0.18 e Å3
3 restraintsAbsolute structure: Flack (1983), 1760 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (18)

Special details

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of [var phi] and ω scans of 0.5°, 40 s per °, 2 iterations.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.65693 (19)1.00052 (6)0.9771 (2)0.0521 (4)
O20.76432 (15)0.90113 (5)0.91549 (15)0.0358 (3)
O30.7061 (2)0.87716 (7)0.67501 (18)0.0564 (5)
O41.1178 (2)0.90102 (8)0.6733 (2)0.0619 (5)
O51.00520 (16)0.93227 (6)0.44177 (16)0.0452 (4)
O60.5895 (2)0.78765 (6)0.8670 (3)0.0661 (5)
O70.8234 (2)0.80702 (6)0.9488 (3)0.0642 (5)
N10.9078 (2)0.94186 (8)0.6227 (2)0.0454 (4)
H1N0.836 (2)0.9596 (8)0.549 (2)0.049 (7)*
C10.4838 (3)0.88257 (10)1.2375 (3)0.0584 (6)
H1A0.55640.88071.33790.070*
H1B0.38710.87391.24420.070*
C20.4852 (3)0.93103 (9)1.1615 (3)0.0504 (6)
H20.45990.95971.21400.060*
C30.6376 (3)0.93282 (8)1.1385 (2)0.0423 (5)
H30.71400.94741.22480.051*
C40.6031 (2)0.96254 (8)0.9971 (2)0.0411 (5)
C50.4713 (3)0.93899 (8)0.8917 (3)0.0464 (5)
H50.41630.95840.80210.056*
C60.3875 (3)0.92269 (9)1.0015 (3)0.0507 (6)
H60.28460.93320.97770.061*
C70.5258 (3)0.85303 (8)1.1207 (3)0.0503 (6)
H70.53350.81731.13970.060*
C80.6645 (2)0.87760 (8)1.1087 (2)0.0385 (4)
H80.75450.86421.18090.046*
C90.6564 (2)0.86978 (7)0.9442 (2)0.0375 (4)
C100.5005 (3)0.88424 (8)0.8639 (3)0.0445 (5)
H100.46050.87270.75790.053*
C110.4164 (3)0.86818 (9)0.9720 (3)0.0503 (6)
H110.33050.84680.93050.060*
C120.7770 (2)0.90133 (7)0.7760 (2)0.0377 (4)
C130.8940 (3)0.93654 (8)0.7718 (2)0.0422 (5)
H13A0.87250.96860.80770.051*
H13B0.98700.92520.84090.051*
C141.0199 (2)0.92285 (8)0.5870 (2)0.0394 (5)
C151.1196 (2)0.91702 (8)0.3776 (2)0.0402 (5)
C161.2606 (3)0.94073 (13)0.4606 (3)0.0650 (8)
H16A1.24840.97610.45750.097*
H16B1.33400.93180.41310.097*
H16C1.29110.92970.56520.097*
C171.0661 (3)0.93591 (14)0.2193 (3)0.0681 (8)
H17A1.06060.97140.22100.102*
H17B0.97010.92250.16940.102*
H17C1.13280.92600.16440.102*
C181.1285 (4)0.86241 (11)0.3777 (4)0.0756 (9)
H18A1.03400.84890.32280.113*
H18B1.15740.85050.48140.113*
H18C1.20000.85230.32900.113*
C190.6842 (3)0.81669 (8)0.9137 (3)0.0483 (5)
C200.8571 (4)0.75648 (10)0.9237 (6)0.1008 (15)
H20A0.78390.74360.83340.121*
H20B0.85530.73641.01090.121*
C211.0032 (3)0.75425 (8)0.9029 (3)0.0489 (6)
C221.0989 (4)0.71945 (11)0.9751 (3)0.0657 (8)
H221.07660.69931.04740.079*
C231.2270 (3)0.71335 (13)0.9445 (4)0.0726 (8)
H231.29100.68820.99310.087*
C241.2633 (3)0.74254 (11)0.8465 (5)0.0752 (9)
H241.35430.73890.82980.090*
C251.1698 (4)0.77737 (10)0.7713 (3)0.0625 (7)
H251.19480.79760.70080.075*
C261.0372 (3)0.78318 (9)0.7980 (3)0.0537 (6)
H260.97070.80690.74420.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0568 (10)0.0371 (8)0.0610 (10)−0.0109 (7)0.0157 (8)−0.0025 (7)
O20.0419 (8)0.0373 (7)0.0348 (7)−0.0062 (6)0.0216 (6)−0.0046 (6)
O30.0766 (12)0.0561 (10)0.0430 (9)−0.0195 (9)0.0279 (8)−0.0168 (7)
O40.0599 (11)0.0840 (13)0.0476 (9)0.0323 (9)0.0251 (8)0.0226 (9)
O50.0425 (8)0.0613 (10)0.0387 (8)0.0141 (7)0.0227 (7)0.0115 (7)
O60.0722 (12)0.0430 (10)0.1014 (15)−0.0175 (9)0.0537 (12)−0.0225 (9)
O70.0624 (11)0.0325 (8)0.1147 (15)0.0020 (8)0.0524 (11)0.0000 (9)
N10.0460 (11)0.0583 (11)0.0396 (10)0.0134 (9)0.0244 (9)0.0137 (8)
C10.0604 (16)0.0588 (14)0.0715 (16)0.0052 (12)0.0429 (14)0.0033 (13)
C20.0528 (14)0.0471 (13)0.0614 (15)−0.0017 (10)0.0326 (12)−0.0095 (11)
C30.0477 (12)0.0437 (12)0.0398 (11)−0.0039 (9)0.0200 (9)−0.0083 (9)
C40.0410 (11)0.0354 (11)0.0498 (12)−0.0035 (8)0.0182 (10)−0.0077 (9)
C50.0442 (12)0.0386 (11)0.0528 (13)−0.0024 (9)0.0095 (10)−0.0039 (10)
C60.0374 (12)0.0401 (12)0.0777 (17)0.0016 (9)0.0219 (11)−0.0018 (11)
C70.0553 (14)0.0384 (11)0.0744 (16)0.0039 (10)0.0455 (13)0.0086 (10)
C80.0437 (11)0.0375 (11)0.0416 (11)0.0001 (9)0.0239 (9)0.0002 (8)
C90.0419 (11)0.0343 (10)0.0436 (11)−0.0072 (8)0.0239 (9)−0.0063 (8)
C100.0442 (12)0.0392 (12)0.0503 (12)−0.0066 (9)0.0148 (9)−0.0098 (9)
C110.0432 (12)0.0412 (12)0.0724 (15)−0.0093 (9)0.0267 (11)−0.0121 (11)
C120.0482 (12)0.0341 (10)0.0356 (10)0.0030 (9)0.0201 (9)−0.0043 (8)
C130.0501 (12)0.0475 (12)0.0369 (11)−0.0020 (9)0.0248 (10)−0.0016 (9)
C140.0435 (11)0.0412 (11)0.0381 (11)0.0039 (9)0.0193 (9)0.0060 (9)
C150.0399 (11)0.0477 (12)0.0395 (11)0.0057 (9)0.0219 (9)0.0026 (9)
C160.0528 (15)0.090 (2)0.0597 (16)−0.0151 (14)0.0291 (13)−0.0203 (14)
C170.0548 (16)0.113 (3)0.0451 (13)0.0158 (15)0.0281 (12)0.0128 (14)
C180.103 (2)0.0515 (15)0.101 (2)0.0018 (15)0.074 (2)−0.0042 (15)
C190.0599 (14)0.0373 (12)0.0645 (14)−0.0069 (10)0.0441 (12)−0.0068 (10)
C200.105 (3)0.0329 (14)0.207 (5)0.0056 (14)0.112 (3)0.0042 (19)
C210.0586 (14)0.0324 (10)0.0659 (15)0.0048 (10)0.0341 (12)0.0034 (10)
C220.090 (2)0.0604 (16)0.0514 (14)0.0184 (15)0.0279 (14)0.0185 (12)
C230.0599 (17)0.073 (2)0.077 (2)0.0147 (14)0.0076 (15)0.0090 (15)
C240.0459 (13)0.0561 (17)0.128 (3)−0.0112 (13)0.0331 (16)−0.0265 (18)
C250.089 (2)0.0453 (13)0.0697 (17)−0.0167 (13)0.0478 (16)−0.0030 (12)
C260.0608 (15)0.0406 (12)0.0575 (14)0.0066 (10)0.0144 (12)0.0122 (10)

Geometric parameters (Å, °)

O1—C41.210 (3)C9—C101.527 (3)
O2—C121.347 (2)C9—C191.529 (3)
O2—C91.445 (2)C10—C111.546 (3)
O3—C121.189 (3)C10—H101.0000
O4—C141.205 (3)C11—H111.0000
O5—C141.347 (3)C12—C131.505 (3)
O5—C151.476 (2)C13—H13A0.9900
O6—C191.198 (3)C13—H13B0.9900
O7—C191.320 (3)C15—C161.504 (4)
O7—C201.465 (3)C15—C171.505 (3)
N1—C141.340 (3)C15—C181.506 (4)
N1—C131.448 (3)C16—H16A0.9800
N1—H1N0.955 (10)C16—H16B0.9800
C1—C71.514 (4)C16—H16C0.9800
C1—C21.514 (4)C17—H17A0.9800
C1—H1A0.9900C17—H17B0.9800
C1—H1B0.9900C17—H17C0.9800
C2—C61.526 (4)C18—H18A0.9800
C2—C31.562 (3)C18—H18B0.9800
C2—H21.0000C18—H18C0.9800
C3—C41.504 (3)C20—C211.494 (4)
C3—C81.582 (3)C20—H20A0.9900
C3—H31.0000C20—H20B0.9900
C4—C51.506 (3)C21—C221.364 (4)
C5—C61.559 (4)C21—C261.379 (3)
C5—C101.570 (3)C22—C231.371 (5)
C5—H51.0000C22—H220.9500
C6—C111.567 (3)C23—C241.343 (5)
C6—H61.0000C23—H230.9500
C7—C111.530 (4)C24—C251.361 (5)
C7—C81.544 (3)C24—H240.9500
C7—H71.0000C25—C261.395 (4)
C8—C91.531 (3)C25—H250.9500
C8—H81.0000C26—H260.9500
C12—O2—C9117.85 (16)C7—C11—H11117.4
C14—O5—C15119.49 (17)C10—C11—H11117.4
C19—O7—C20114.5 (2)C6—C11—H11117.4
C14—N1—C13121.39 (19)O3—C12—O2124.4 (2)
C14—N1—H1N119.6 (17)O3—C12—C13126.89 (19)
C13—N1—H1N119.0 (17)O2—C12—C13108.69 (17)
C7—C1—C295.3 (2)N1—C13—C12112.50 (19)
C7—C1—H1A112.7N1—C13—H13A109.1
C2—C1—H1A112.7C12—C13—H13A109.1
C7—C1—H1B112.7N1—C13—H13B109.1
C2—C1—H1B112.7C12—C13—H13B109.1
H1A—C1—H1B110.2H13A—C13—H13B107.8
C1—C2—C6103.6 (2)O4—C14—N1124.4 (2)
C1—C2—C3103.7 (2)O4—C14—O5126.3 (2)
C6—C2—C3101.79 (18)N1—C14—O5109.31 (19)
C1—C2—H2115.3O5—C15—C16110.40 (19)
C6—C2—H2115.3O5—C15—C17102.88 (18)
C3—C2—H2115.3C16—C15—C17110.2 (2)
C4—C3—C299.81 (19)O5—C15—C18109.52 (19)
C4—C3—C8111.90 (17)C16—C15—C18113.0 (2)
C2—C3—C8102.04 (17)C17—C15—C18110.4 (2)
C4—C3—H3113.9C15—C16—H16A109.5
C2—C3—H3113.9C15—C16—H16B109.5
C8—C3—H3113.9H16A—C16—H16B109.5
O1—C4—C3128.0 (2)C15—C16—H16C109.5
O1—C4—C5126.4 (2)H16A—C16—H16C109.5
C3—C4—C5105.04 (19)H16B—C16—H16C109.5
C4—C5—C6101.77 (19)C15—C17—H17A109.5
C4—C5—C10111.17 (19)C15—C17—H17B109.5
C6—C5—C1089.40 (18)H17A—C17—H17B109.5
C4—C5—H5116.8C15—C17—H17C109.5
C6—C5—H5116.8H17A—C17—H17C109.5
C10—C5—H5116.8H17B—C17—H17C109.5
C2—C6—C5107.93 (19)C15—C18—H18A109.5
C2—C6—C11103.0 (2)C15—C18—H18B109.5
C5—C6—C1190.14 (18)H18A—C18—H18B109.5
C2—C6—H6117.3C15—C18—H18C109.5
C5—C6—H6117.3H18A—C18—H18C109.5
C11—C6—H6117.3H18B—C18—H18C109.5
C1—C7—C11104.1 (2)O6—C19—O7125.0 (2)
C1—C7—C8104.5 (2)O6—C19—C9123.1 (2)
C11—C7—C8101.31 (18)O7—C19—C9111.9 (2)
C1—C7—H7115.1O7—C20—C21109.1 (2)
C11—C7—H7115.1O7—C20—H20A109.9
C8—C7—H7115.1C21—C20—H20A109.9
C9—C8—C7103.44 (18)O7—C20—H20B109.9
C9—C8—C3110.57 (17)C21—C20—H20B109.9
C7—C8—C3102.31 (17)H20A—C20—H20B108.3
C9—C8—H8113.2C22—C21—C26118.9 (3)
C7—C8—H8113.2C22—C21—C20119.8 (3)
C3—C8—H8113.2C26—C21—C20120.8 (3)
O2—C9—C10114.94 (17)C21—C22—C23120.6 (3)
O2—C9—C19110.94 (17)C21—C22—H22119.7
C10—C9—C19111.30 (18)C23—C22—H22119.7
O2—C9—C8106.48 (16)C24—C23—C22120.8 (3)
C10—C9—C8101.39 (17)C24—C23—H23119.6
C19—C9—C8111.31 (18)C22—C23—H23119.6
C9—C10—C11104.35 (19)C23—C24—C25120.1 (3)
C9—C10—C5111.82 (18)C23—C24—H24119.9
C11—C10—C590.48 (18)C25—C24—H24119.9
C9—C10—H10115.7C24—C25—C26119.8 (3)
C11—C10—H10115.7C24—C25—H25120.1
C5—C10—H10115.7C26—C25—H25120.1
C7—C11—C10108.19 (19)C21—C26—C25119.7 (2)
C7—C11—C6102.3 (2)C21—C26—H26120.2
C10—C11—C689.98 (18)C25—C26—H26120.2
C7—C1—C2—C652.8 (2)C4—C5—C10—C9−2.9 (3)
C7—C1—C2—C3−53.2 (2)C6—C5—C10—C9−105.3 (2)
C1—C2—C3—C4149.0 (2)C4—C5—C10—C11102.8 (2)
C6—C2—C3—C441.6 (2)C6—C5—C10—C110.38 (19)
C1—C2—C3—C833.9 (2)C1—C7—C11—C10127.0 (2)
C6—C2—C3—C8−73.4 (2)C8—C7—C11—C1018.7 (2)
C2—C3—C4—O1122.5 (3)C1—C7—C11—C632.9 (2)
C8—C3—C4—O1−130.2 (2)C8—C7—C11—C6−75.4 (2)
C2—C3—C4—C5−49.2 (2)C9—C10—C11—C79.3 (2)
C8—C3—C4—C558.2 (2)C5—C10—C11—C7−103.4 (2)
O1—C4—C5—C6−136.1 (2)C9—C10—C11—C6112.32 (18)
C3—C4—C5—C635.7 (2)C5—C10—C11—C6−0.38 (18)
O1—C4—C5—C10129.9 (3)C2—C6—C11—C70.6 (2)
C3—C4—C5—C10−58.2 (2)C5—C6—C11—C7109.02 (19)
C1—C2—C6—C5−128.2 (2)C2—C6—C11—C10−108.1 (2)
C3—C2—C6—C5−20.8 (2)C5—C6—C11—C100.38 (19)
C1—C2—C6—C11−33.8 (2)C9—O2—C12—O3−0.6 (3)
C3—C2—C6—C1173.7 (2)C9—O2—C12—C13179.57 (17)
C4—C5—C6—C2−8.2 (2)C14—N1—C13—C12−107.3 (3)
C10—C5—C6—C2103.3 (2)O3—C12—C13—N14.5 (3)
C4—C5—C6—C11−111.89 (19)O2—C12—C13—N1−175.63 (18)
C10—C5—C6—C11−0.38 (18)C13—N1—C14—O4−1.3 (4)
C2—C1—C7—C11−52.6 (2)C13—N1—C14—O5178.9 (2)
C2—C1—C7—C853.3 (2)C15—O5—C14—O4−2.7 (4)
C1—C7—C8—C9−148.1 (2)C15—O5—C14—N1176.98 (19)
C11—C7—C8—C9−40.1 (2)C14—O5—C15—C16−59.9 (3)
C1—C7—C8—C3−33.1 (2)C14—O5—C15—C17−177.5 (2)
C11—C7—C8—C374.8 (2)C14—O5—C15—C1865.1 (3)
C4—C3—C8—C93.2 (2)C20—O7—C19—O61.1 (4)
C2—C3—C8—C9109.08 (19)C20—O7—C19—C9179.3 (3)
C4—C3—C8—C7−106.4 (2)O2—C9—C19—O6−147.2 (2)
C2—C3—C8—C7−0.6 (2)C10—C9—C19—O6−17.9 (3)
C12—O2—C9—C10−67.7 (2)C8—C9—C19—O694.5 (3)
C12—O2—C9—C1959.7 (2)O2—C9—C19—O734.5 (3)
C12—O2—C9—C8−179.06 (17)C10—C9—C19—O7163.9 (2)
C7—C8—C9—O2167.11 (17)C8—C9—C19—O7−83.8 (2)
C3—C8—C9—O258.2 (2)C19—O7—C20—C21155.9 (3)
C7—C8—C9—C1046.57 (19)O7—C20—C21—C22134.8 (3)
C3—C8—C9—C10−62.3 (2)O7—C20—C21—C26−52.9 (5)
C7—C8—C9—C19−71.9 (2)C26—C21—C22—C230.2 (5)
C3—C8—C9—C19179.23 (18)C20—C21—C22—C23172.6 (3)
O2—C9—C10—C11−148.11 (17)C21—C22—C23—C242.3 (5)
C19—C9—C10—C1184.7 (2)C22—C23—C24—C25−2.9 (5)
C8—C9—C10—C11−33.7 (2)C23—C24—C25—C261.1 (5)
O2—C9—C10—C5−51.7 (3)C22—C21—C26—C25−2.0 (4)
C19—C9—C10—C5−178.88 (19)C20—C21—C26—C25−174.3 (3)
C8—C9—C10—C562.7 (2)C24—C25—C26—C211.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.96 (1)1.99 (2)2.882 (2)154 (2)

Symmetry codes: (i) x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2360).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2006). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813–817.
  • Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2006). Acta Cryst. E62, o268–o270.
  • Liu, X., Kassiou, M., Christie, M. J. & Hambley, T. W. (2001). Aust. J. Chem.54, 31–35.
  • Marchand, A. P. (1989). Chem. Rev.89, 1011–1033.
  • Martins, F. J. C., Viljoen, A. M., Kruger, H. G. & Joubert, J. A. (1993). Tetrahedron, 49, 9573–9580.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watson, W. H., Bodige, S. G., Marchand, A. P. & Chong, H.-S. (2000). Struct. Chem.11, 257–260.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography