PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2483.
Published online 2010 September 4. doi:  10.1107/S1600536810034872
PMCID: PMC2983416

5-(4-Chloro­phen­yl)-6-isopropyl-5,6-dihydro-4H-pyrrolo­[3,4-c]isoxazole

Abstract

The title compound, C14H15ClN2O, contains an eight-membered 5,5-fused bicycle with two substituents. The dihedral angle between the nearly planar eight-membered ring [maximum deviation = 0.033 (2) Å] and the benzene ring is 25.0 (1)°. In the crystal structure, mol­ecules are stacked in columns along the b axis and C—H(...)π inter­actions are observed between the columns.

Related literature

For the synthesis of the title compound, see: Kim & Lee (1994 [triangle]). For the biological activity of isoxazoles, see: Boyd (1991 [triangle]); Kim et al. (1994 [triangle], 1997 [triangle], 1999 [triangle]); Lang & Lin (1984 [triangle]); Sutharchanadevi & Murugan (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2483-scheme1.jpg

Experimental

Crystal data

  • C14H15ClN2O
  • M r = 262.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2483-efi1.jpg
  • a = 15.0037 (9) Å
  • b = 6.2364 (4) Å
  • c = 15.5801 (9) Å
  • β = 117.238 (1)°
  • V = 1296.16 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 200 K
  • 0.35 × 0.28 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.861, T max = 0.966
  • 9224 measured reflections
  • 3211 independent reflections
  • 1907 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.117
  • S = 1.07
  • 3211 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034872/is2594sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034872/is2594Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by financially Chonnam National University (2008).

supplementary crystallographic information

Comment

Isoxazole derivatives bearing various substituents are known to have diverse biological activities in pharmaceutical and agricultural areas (Lang & Lin, 1984; Boyd, 1991). Dihydropyrrolo[3,4-c]isoxazole, a fused bicyclic isoxazole, is interesting to develop a new lead compound as a plant fungicide because bicyclic isoxazoles such as dihydrofuro[3,4-c]isoxazole and dihydropyrano[3,4-c]isoxazole derivatives particularly have fungicidal activities against some plant pathogens (Kim et al., 1994, 1997, 1999). The title compound was prepared by the known method (Kim & Lee, 1994) with a minor modification.

The title compound, C14H15ClN2O, is an 8-membered 5,5-fused bicycle with two substituents (Fig. 1). The dihedral angle between the nearly planar 8-membered ring [maximum deviation of 0.033 (2) Å for C7] and the benzene ring [maximum deviation of 0.023 (2) Å for C1] is 25.0 (1)°. In the crystal structure, the molecules are stacked in columns along the b axis (Fig. 2), and display C—H···Cg1 (the centroid of ring C1–C6) interactions (Table 1).

Experimental

A mixture of 3-methyl-1-nitrobutan-2-yl acetate (1.23 g, 7 mmol), 4-chloro-N-(prop-2-ynyl)aniline (3.48 g, 21 mmol) and K2CO3 (1.16 g, 8.4 mmol) in THF (20 ml) was stirred for 12 h at 25 °C. The mixture was concentrated in vacuo and column chromatographed (SiO2) by eluting with a mixture of n-hexane/EtOAc (5:1) to afford 4-chloro-N-(3-methyl-1-nitrobutan-2-yl)-N-(prop-2-ynyl)aniline (0.49 g, 25%). The title compound was prepared by the intramolecular nitrile oxide-alkyne cycloaddition of 4-chloro-N-(3-methyl-1-nitrobutan-2-yl)-N-(prop-2-ynyl)aniline in the presence of 4-chlorophenylisocyanate and triethylamine (Kim & Lee, 1994). Crystals suitable for X-ray analysis were obtained by slow evaporation from an n-hexane/CHCl3 solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (CH, sp2), 1.00 (CH, sp3), 0.99 (CH2) or 0.98 Å (CH3), and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)].

Figures

Fig. 1.
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
Fig. 2.
View of the unit-cell contents of the title compound.

Crystal data

C14H15ClN2OF(000) = 552
Mr = 262.73Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2659 reflections
a = 15.0037 (9) Åθ = 2.6–27.1°
b = 6.2364 (4) ŵ = 0.28 mm1
c = 15.5801 (9) ÅT = 200 K
β = 117.238 (1)°Stick, pale yellow
V = 1296.16 (14) Å30.35 × 0.28 × 0.12 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer3211 independent reflections
Radiation source: fine-focus sealed tube1907 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −19→20
Tmin = 0.861, Tmax = 0.966k = −8→8
9224 measured reflectionsl = −18→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0311P)2 + 0.6269P] where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.53029 (5)0.72970 (11)0.07428 (5)0.0460 (2)
O10.17957 (13)1.1528 (3)0.45555 (12)0.0468 (5)
N10.25711 (13)0.8986 (3)0.24578 (13)0.0292 (4)
N20.17208 (15)1.2612 (3)0.37156 (14)0.0400 (5)
C10.31613 (16)0.8552 (4)0.20076 (15)0.0284 (5)
C20.32447 (17)1.0003 (4)0.13595 (16)0.0317 (5)
H20.28571.12800.11930.038*
C30.38835 (17)0.9599 (4)0.09593 (16)0.0341 (5)
H30.39401.06080.05300.041*
C40.44355 (17)0.7739 (4)0.11838 (16)0.0327 (5)
C50.43342 (16)0.6228 (4)0.17806 (16)0.0333 (5)
H50.46960.49180.19110.040*
C60.37017 (16)0.6630 (4)0.21896 (16)0.0316 (5)
H60.36340.55860.26000.038*
C70.27190 (18)0.7731 (4)0.33222 (17)0.0341 (5)
H7A0.34370.74110.37380.041*
H7B0.23350.63720.31400.041*
C80.23192 (17)0.9227 (4)0.38036 (16)0.0322 (5)
C90.21539 (18)0.9522 (4)0.45747 (17)0.0412 (6)
H90.22710.84810.50600.049*
C100.20329 (16)1.1175 (4)0.33080 (16)0.0298 (5)
C110.21313 (16)1.1144 (4)0.23924 (15)0.0279 (5)
H110.26251.22610.24260.034*
C120.11400 (17)1.1478 (4)0.14745 (16)0.0325 (5)
H120.12551.11030.09090.039*
C130.0833 (2)1.3827 (4)0.13769 (19)0.0464 (7)
H13A0.07131.42390.19220.070*
H13B0.02181.40360.07720.070*
H13C0.13691.47160.13730.070*
C140.03096 (18)1.0035 (4)0.14450 (19)0.0488 (7)
H14A0.01321.04700.19510.073*
H14B0.05420.85440.15510.073*
H14C−0.02801.01610.08130.073*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0449 (4)0.0560 (4)0.0462 (4)0.0075 (3)0.0287 (3)−0.0022 (3)
O10.0517 (11)0.0585 (12)0.0343 (10)0.0084 (9)0.0233 (9)−0.0015 (9)
N10.0326 (10)0.0275 (10)0.0298 (10)0.0036 (8)0.0164 (8)0.0050 (8)
N20.0474 (12)0.0423 (12)0.0348 (11)0.0057 (10)0.0226 (10)0.0010 (10)
C10.0285 (12)0.0294 (12)0.0256 (12)−0.0007 (10)0.0109 (9)−0.0007 (9)
C20.0340 (13)0.0306 (12)0.0314 (13)0.0048 (10)0.0158 (10)0.0041 (10)
C30.0370 (13)0.0362 (14)0.0310 (13)−0.0029 (11)0.0172 (11)0.0018 (10)
C40.0322 (12)0.0364 (13)0.0315 (13)0.0016 (11)0.0163 (10)−0.0042 (10)
C50.0312 (12)0.0306 (13)0.0340 (13)0.0033 (10)0.0115 (10)−0.0008 (10)
C60.0300 (12)0.0314 (12)0.0308 (12)0.0003 (10)0.0117 (10)0.0027 (10)
C70.0414 (13)0.0312 (13)0.0331 (13)0.0030 (11)0.0199 (11)0.0064 (10)
C80.0317 (12)0.0369 (13)0.0291 (12)−0.0003 (11)0.0148 (10)0.0034 (10)
C90.0400 (14)0.0509 (16)0.0330 (14)0.0066 (12)0.0171 (11)0.0067 (12)
C100.0264 (11)0.0332 (13)0.0294 (12)−0.0006 (10)0.0124 (10)−0.0002 (10)
C110.0275 (11)0.0290 (12)0.0286 (12)−0.0002 (10)0.0139 (9)0.0017 (9)
C120.0322 (13)0.0359 (13)0.0283 (12)0.0036 (10)0.0128 (10)0.0030 (10)
C130.0456 (15)0.0455 (16)0.0449 (16)0.0111 (13)0.0180 (13)0.0129 (13)
C140.0350 (14)0.0522 (17)0.0492 (16)−0.0046 (13)0.0106 (12)0.0032 (13)

Geometric parameters (Å, °)

Cl1—C41.749 (2)C7—H7A0.9900
O1—C91.356 (3)C7—H7B0.9900
O1—N21.431 (2)C8—C91.346 (3)
N1—C11.385 (3)C8—C101.398 (3)
N1—C111.482 (3)C9—H90.9500
N1—C71.484 (3)C10—C111.500 (3)
N2—C101.303 (3)C11—C121.534 (3)
C1—C61.401 (3)C11—H111.0000
C1—C21.403 (3)C12—C141.521 (3)
C2—C31.385 (3)C12—C131.522 (3)
C2—H20.9500C12—H121.0000
C3—C41.374 (3)C13—H13A0.9800
C3—H30.9500C13—H13B0.9800
C4—C51.380 (3)C13—H13C0.9800
C5—C61.387 (3)C14—H14A0.9800
C5—H50.9500C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C7—C81.485 (3)
C9—O1—N2108.68 (17)C10—C8—C7111.13 (19)
C1—N1—C11120.72 (17)C8—C9—O1109.8 (2)
C1—N1—C7119.44 (18)C8—C9—H9125.1
C11—N1—C7114.75 (16)O1—C9—H9125.1
C10—N2—O1103.03 (18)N2—C10—C8114.6 (2)
N1—C1—C6120.6 (2)N2—C10—C11133.3 (2)
N1—C1—C2121.8 (2)C8—C10—C11112.02 (19)
C6—C1—C2117.59 (19)N1—C11—C10100.43 (17)
C3—C2—C1121.0 (2)N1—C11—C12113.51 (18)
C3—C2—H2119.5C10—C11—C12114.16 (17)
C1—C2—H2119.5N1—C11—H11109.5
C4—C3—C2120.0 (2)C10—C11—H11109.5
C4—C3—H3120.0C12—C11—H11109.5
C2—C3—H3120.0C14—C12—C13111.1 (2)
C3—C4—C5120.6 (2)C14—C12—C11112.28 (19)
C3—C4—Cl1120.21 (18)C13—C12—C11110.13 (19)
C5—C4—Cl1119.21 (18)C14—C12—H12107.7
C4—C5—C6119.7 (2)C13—C12—H12107.7
C4—C5—H5120.1C11—C12—H12107.7
C6—C5—H5120.1C12—C13—H13A109.5
C5—C6—C1121.0 (2)C12—C13—H13B109.5
C5—C6—H6119.5H13A—C13—H13B109.5
C1—C6—H6119.5C12—C13—H13C109.5
N1—C7—C8101.51 (17)H13A—C13—H13C109.5
N1—C7—H7A111.5H13B—C13—H13C109.5
C8—C7—H7A111.5C12—C14—H14A109.5
N1—C7—H7B111.5C12—C14—H14B109.5
C8—C7—H7B111.5H14A—C14—H14B109.5
H7A—C7—H7B109.3C12—C14—H14C109.5
C9—C8—C10103.8 (2)H14A—C14—H14C109.5
C9—C8—C7145.0 (2)H14B—C14—H14C109.5
C9—O1—N2—C100.3 (2)C7—C8—C9—O1175.2 (3)
C11—N1—C1—C6170.09 (19)N2—O1—C9—C80.1 (3)
C7—N1—C1—C616.6 (3)O1—N2—C10—C8−0.5 (3)
C11—N1—C1—C2−9.7 (3)O1—N2—C10—C11177.8 (2)
C7—N1—C1—C2−163.2 (2)C9—C8—C10—N20.6 (3)
N1—C1—C2—C3176.2 (2)C7—C8—C10—N2−176.7 (2)
C6—C1—C2—C3−3.7 (3)C9—C8—C10—C11−178.10 (19)
C1—C2—C3—C41.0 (3)C7—C8—C10—C114.6 (3)
C2—C3—C4—C52.2 (3)C1—N1—C11—C10−153.36 (19)
C2—C3—C4—Cl1−175.91 (18)C7—N1—C11—C101.3 (2)
C3—C4—C5—C6−2.7 (3)C1—N1—C11—C1284.4 (2)
Cl1—C4—C5—C6175.43 (17)C7—N1—C11—C12−121.0 (2)
C4—C5—C6—C10.0 (3)N2—C10—C11—N1178.2 (2)
N1—C1—C6—C5−176.7 (2)C8—C10—C11—N1−3.5 (2)
C2—C1—C6—C53.2 (3)N2—C10—C11—C12−60.0 (3)
C1—N1—C7—C8156.14 (19)C8—C10—C11—C12118.3 (2)
C11—N1—C7—C81.2 (2)N1—C11—C12—C1465.4 (2)
N1—C7—C8—C9−178.9 (3)C10—C11—C12—C14−48.9 (3)
N1—C7—C8—C10−3.4 (2)N1—C11—C12—C13−170.28 (18)
C10—C8—C9—O1−0.4 (3)C10—C11—C12—C1375.4 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.952.653.405 (3)136
C9—H9···Cg1ii0.952.623.392 (3)138

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2594).

References

  • Boyd, G. V. (1991). Prog. Heterocyl. Chem.3, 166–185.
  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kim, H. J., Hwang, K.-J. & Lee, J. H. (1994). Biosci. Biotechnol. Biochem.58, 1191–1192.
  • Kim, H. J., Hwang, K.-J. & Lee, J. H. (1997). Bull. Korean Chem. Soc.18, 534–540.
  • Kim, H. J., Jang, J. Y., Chung, K. H. & Lee, J. H. (1999). Biosci. Biotechnol. Biochem.63, 494–499.
  • Kim, H. J. & Lee, J. H. (1994). Heterocycles, 38, 1383–1391.
  • Lang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1–130. Oxford: Pergamon Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sutharchanadevi, M. & Murugan, R. (1996). Comprehensive Heterocyclic Chemistry, Vol. 3, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 221–260. New York: Pergamon.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography