PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2633.
Published online 2010 September 25. doi:  10.1107/S1600536810037396
PMCID: PMC2983415

3-(tert-But­oxy­carbon­yl)-2-(4-chloro­phen­yl)-1,3-thia­zolidine-4-carb­oxy­lic acid

Abstract

In the title compound, C15H18ClNO4S, the thia­zolidine ring adopts a twisted conformation about the S—C(methyl­ene) bond. The dihedral angle between the five- and six-membered rings is 77.2 (3)°. In the crystal, the mol­ecules are linked by O—H(...)O hydrogen bonds, generating C(7) chains propagating in [100].

Related literature

For background to the biological properties of the title compound, see: Lu et al. (2010 [triangle]); Song et al. (2009 [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2633-scheme1.jpg

Experimental

Crystal data

  • C15H18ClNO4S
  • M r = 343.81
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2633-efi1.jpg
  • a = 6.4600 (13) Å
  • b = 10.641 (2) Å
  • c = 12.411 (3) Å
  • β = 94.52 (3)°
  • V = 850.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.899, T max = 0.965
  • 1638 measured reflections
  • 1638 independent reflections
  • 1363 reflections with I > 2σ(I)
  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.159
  • S = 1.08
  • 1638 reflections
  • 185 parameters
  • 89 restraints
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle])
  • Flack parameter: −0.09 (19)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037396/hb5637sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037396/hb5637Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by youthfund project (project JQ201006) of Changzhou University.

supplementary crystallographic information

Comment

Recently, 3-tert-butoxycarbonyl-2-arylthiazolidine-4-carboxylic acid derivatives have been reported to possess antimicrobial and antitumor activities (Song et al., 2009; Lu et al., 2010). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). There are intermolecular O—H···O hydrogen bonds in (I).

Experimental

A mixture of L-cysteine (1.41 g, 10 mmol) and 4-chlorobenzaldehyde (1.4 g, 10 mmol) in methanol (100 ml) was stirred at room temperature for 10 h, and the separated solid was collected, washed with diethyl ether, and dried to obtain 2-(4-chlorophenyl)thiazolidine-4-carboxylic with yield of 90%. In ice water, 2-(4-chlorophenyl)thiazolidine-4-carboxylic (1 mmol) was dissolved in 1 N NaOH (1 ml) and 1,4-dioxane (10 ml); then di-tert-butyldicarbonate (1 mmol) was added slowly and stirred at room temperature for 6 h. The reaction mixture was concentrated in a vacuum and washed with ethyl acetate (10 ml). The aqueous phase was adjusted to pH 4 by adding 1 N HCl, then extracted with ethyl acetate, dried with magnesium sulfate, filtered, After keeping the filtrate in air for 5 d, colorless block-shaped crystals of (I) were formed.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The structure of (I) showing 30% probability displacement ellipsoids.

Crystal data

C15H18ClNO4SF(000) = 360
Mr = 343.81Dx = 1.343 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.4600 (13) Åθ = 9–12°
b = 10.641 (2) ŵ = 0.36 mm1
c = 12.411 (3) ÅT = 293 K
β = 94.52 (3)°Block, colorless
V = 850.5 (3) Å30.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer1363 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.3°, θmin = 1.7°
ω/2θ scanh = −7→7
Absorption correction: ψ scan (North et al., 1968)k = 0→12
Tmin = 0.899, Tmax = 0.965l = 0→14
1638 measured reflections200 standard reflections every 3 reflections
1638 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.159w = 1/[σ2(Fo2) + (0.0649P)2 + 1.2912P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1638 reflectionsΔρmax = 0.43 e Å3
185 parametersΔρmin = −0.37 e Å3
89 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.09 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3575 (11)0.4607 (7)0.7980 (6)0.0457 (16)
H10.47760.49840.77680.055*
C20.3229 (12)0.3336 (8)0.7816 (6)0.0519 (17)
H20.41830.28630.74650.062*
C30.1505 (12)0.2766 (8)0.8162 (7)0.0555 (18)
C40.0021 (13)0.3440 (8)0.8654 (6)0.0585 (18)
H4−0.11630.30540.88790.070*
C50.0368 (11)0.4720 (7)0.8800 (6)0.0492 (16)
H5−0.06040.51950.91360.059*
C60.2109 (9)0.5308 (6)0.8464 (5)0.0349 (13)
C70.2361 (9)0.6677 (6)0.8692 (4)0.0358 (13)
H70.10360.70230.88870.043*
C80.4770 (9)0.8351 (7)0.8161 (5)0.0409 (14)
H80.43640.91650.78420.049*
O10.8408 (8)0.8639 (5)0.8109 (4)0.060
C90.4827 (11)0.8471 (7)0.9375 (5)0.0494 (16)
H9A0.37600.90430.95830.059*
H9B0.61700.87740.96710.059*
C100.6910 (9)0.8031 (8)0.7835 (5)0.0459 (17)
C110.2163 (9)0.7473 (7)0.6838 (5)0.0373 (14)
C120.2095 (11)0.8500 (8)0.5098 (5)0.0520 (18)
C130.2564 (14)0.7386 (9)0.4443 (8)0.070
H13A0.39990.71610.45860.106*
H13B0.22930.75790.36900.106*
H13C0.17050.66950.46290.106*
C14−0.0195 (13)0.8803 (9)0.4998 (8)0.069
H14A−0.09750.80560.51230.104*
H14B−0.05830.91170.42860.104*
H14C−0.04830.94290.55230.104*
C150.3316 (15)0.9649 (10)0.4750 (7)0.078 (3)
H15A0.29431.03710.51560.116*
H15B0.29920.98020.39930.116*
H15C0.47770.94920.48830.116*
Cl10.1156 (5)0.1156 (2)0.7961 (2)0.0908 (9)
N10.3167 (7)0.7456 (5)0.7848 (4)0.0336 (11)
O20.6980 (6)0.7001 (6)0.7256 (4)0.0534 (12)
H2A0.81850.68580.71310.080*
O30.0721 (6)0.6749 (5)0.6573 (3)0.0398 (10)
O40.2916 (7)0.8324 (5)0.6216 (3)0.0448 (11)
S10.4357 (3)0.68989 (18)0.98363 (12)0.0481 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.047 (4)0.049 (3)0.041 (4)0.001 (3)0.003 (3)0.001 (3)
C20.059 (4)0.055 (4)0.041 (4)0.010 (3)0.001 (3)−0.006 (3)
C30.064 (4)0.047 (4)0.053 (4)−0.006 (3)−0.014 (3)0.007 (3)
C40.060 (4)0.057 (4)0.058 (4)−0.014 (3)0.004 (3)0.004 (4)
C50.046 (3)0.056 (4)0.045 (4)−0.004 (3)0.003 (3)0.011 (3)
C60.039 (3)0.035 (3)0.031 (3)0.000 (2)0.002 (2)0.008 (3)
C70.035 (3)0.043 (4)0.030 (3)0.005 (3)0.003 (2)0.006 (3)
C80.042 (3)0.038 (3)0.042 (3)0.001 (3)−0.004 (3)0.001 (3)
O10.0600.0600.0600.0000.0050.000
C90.052 (4)0.052 (4)0.043 (3)0.008 (3)−0.006 (3)−0.009 (3)
C100.026 (3)0.074 (5)0.037 (3)−0.015 (3)−0.006 (2)−0.002 (3)
C110.028 (3)0.053 (4)0.031 (3)0.009 (3)−0.002 (2)−0.002 (3)
C120.050 (4)0.070 (5)0.035 (3)−0.008 (4)−0.003 (3)0.019 (4)
C130.0700.0700.0700.0000.0060.000
C140.0700.0700.0700.0000.0060.000
C150.086 (6)0.085 (7)0.061 (5)−0.007 (5)0.006 (4)0.036 (5)
Cl10.115 (2)0.0475 (12)0.1032 (19)−0.0122 (13)−0.0338 (16)0.0021 (13)
N10.030 (2)0.038 (3)0.033 (2)0.004 (2)0.0010 (19)0.001 (2)
O20.032 (2)0.066 (3)0.064 (3)−0.010 (2)0.012 (2)−0.018 (3)
O30.029 (2)0.058 (3)0.0317 (19)−0.007 (2)−0.0026 (15)−0.005 (2)
O40.044 (2)0.055 (3)0.035 (2)−0.015 (2)0.0001 (18)0.016 (2)
S10.0578 (10)0.0564 (10)0.0285 (7)−0.0005 (9)−0.0071 (6)−0.0025 (9)

Geometric parameters (Å, °)

C1—C61.379 (9)C9—H9A0.9700
C1—C21.384 (11)C9—H9B0.9700
C1—H10.9300C10—O21.313 (9)
C2—C31.367 (11)C11—O31.234 (8)
C2—H20.9300C11—O41.308 (8)
C3—C41.378 (12)C11—N11.365 (8)
C3—Cl11.744 (8)C12—O41.457 (8)
C4—C51.390 (11)C12—C131.483 (12)
C4—H40.9300C12—C141.510 (11)
C5—C61.380 (9)C12—C151.535 (11)
C5—H50.9300C13—H13A0.9600
C6—C71.490 (9)C13—H13B0.9600
C7—N11.464 (8)C13—H13C0.9600
C7—S11.857 (6)C14—H14A0.9600
C7—H70.9800C14—H14B0.9600
C8—N11.437 (8)C14—H14C0.9600
C8—C101.510 (9)C15—H15A0.9600
C8—C91.510 (9)C15—H15B0.9600
C8—H80.9800C15—H15C0.9600
O1—C101.191 (8)O2—H2A0.8200
C9—S11.801 (8)
C6—C1—C2119.0 (7)O1—C10—O2123.2 (6)
C6—C1—H1120.5O1—C10—C8122.8 (7)
C2—C1—H1120.5O2—C10—C8114.0 (5)
C3—C2—C1120.9 (7)O3—C11—O4125.6 (5)
C3—C2—H2119.6O3—C11—N1122.1 (6)
C1—C2—H2119.6O4—C11—N1112.3 (5)
C2—C3—C4121.4 (8)O4—C12—C13110.1 (7)
C2—C3—Cl1119.4 (7)O4—C12—C14112.7 (6)
C4—C3—Cl1119.2 (7)C13—C12—C14111.5 (7)
C3—C4—C5117.2 (8)O4—C12—C15102.4 (6)
C3—C4—H4121.4C13—C12—C15110.5 (6)
C5—C4—H4121.4C14—C12—C15109.2 (7)
C6—C5—C4122.2 (8)C12—C13—H13A109.5
C6—C5—H5118.9C12—C13—H13B109.5
C4—C5—H5118.9H13A—C13—H13B109.5
C1—C6—C5119.3 (6)C12—C13—H13C109.5
C1—C6—C7122.9 (6)H13A—C13—H13C109.5
C5—C6—C7117.8 (6)H13B—C13—H13C109.5
N1—C7—C6117.2 (5)C12—C14—H14A109.5
N1—C7—S1102.2 (4)C12—C14—H14B109.5
C6—C7—S1109.2 (4)H14A—C14—H14B109.5
N1—C7—H7109.3C12—C14—H14C109.5
C6—C7—H7109.3H14A—C14—H14C109.5
S1—C7—H7109.3H14B—C14—H14C109.5
N1—C8—C10115.7 (6)C12—C15—H15A109.5
N1—C8—C9106.7 (5)C12—C15—H15B109.5
C10—C8—C9109.6 (5)H15A—C15—H15B109.5
N1—C8—H8108.2C12—C15—H15C109.5
C10—C8—H8108.2H15A—C15—H15C109.5
C9—C8—H8108.2H15B—C15—H15C109.5
C8—C9—S1104.3 (5)C11—N1—C8121.3 (5)
C8—C9—H9A110.9C11—N1—C7119.6 (5)
S1—C9—H9A110.9C8—N1—C7118.1 (5)
C8—C9—H9B110.9C10—O2—H2A109.5
S1—C9—H9B110.9C11—O4—C12121.8 (5)
H9A—C9—H9B108.9C9—S1—C790.0 (3)
C6—C1—C2—C3−2.5 (11)O3—C11—N1—C8−176.7 (6)
C1—C2—C3—C42.1 (12)O4—C11—N1—C83.6 (8)
C1—C2—C3—Cl1−178.8 (6)O3—C11—N1—C7−8.1 (9)
C2—C3—C4—C5−1.1 (11)O4—C11—N1—C7172.2 (5)
Cl1—C3—C4—C5179.8 (6)C10—C8—N1—C11−83.3 (7)
C3—C4—C5—C60.5 (11)C9—C8—N1—C11154.5 (5)
C2—C1—C6—C51.9 (10)C10—C8—N1—C7107.9 (6)
C2—C1—C6—C7178.9 (6)C9—C8—N1—C7−14.2 (7)
C4—C5—C6—C1−0.9 (10)C6—C7—N1—C1156.7 (7)
C4—C5—C6—C7−178.1 (6)S1—C7—N1—C11176.0 (4)
C1—C6—C7—N142.7 (8)C6—C7—N1—C8−134.4 (6)
C5—C6—C7—N1−140.2 (6)S1—C7—N1—C8−15.1 (6)
C1—C6—C7—S1−72.7 (7)O3—C11—O4—C12−0.4 (10)
C5—C6—C7—S1104.3 (6)N1—C11—O4—C12179.3 (6)
N1—C8—C9—S137.6 (6)C13—C12—O4—C11−67.2 (8)
C10—C8—C9—S1−88.4 (6)C14—C12—O4—C1158.1 (10)
N1—C8—C10—O1−174.4 (6)C15—C12—O4—C11175.3 (6)
C9—C8—C10—O1−53.8 (9)C8—C9—S1—C7−40.6 (5)
N1—C8—C10—O23.4 (8)N1—C7—S1—C931.7 (4)
C9—C8—C10—O2124.0 (6)C6—C7—S1—C9156.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.832.638 (6)167

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5637).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Lu, Y., Wang, Z., Li, C.-M., Chen, J.-J., Dalton, J. T., Li, W. & Miller, D. D. (2010). Bioorg. Med. Chem.18, 477–495. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, Z.-C., Ma, G.-Y., Lv, P.-C., Li, H.-Q., Xiao, Z.-P. & Zhu, H.-L. (2009). Eur. J. Med. Chem.44, 3903–3908. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography