PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1335.
Published online 2010 September 30. doi:  10.1107/S1600536810037104
PMCID: PMC2983412

Bromidotricarbon­yl[4-iodo-N-(pyridin-2-yl­methyl­idene)aniline-κ2 N,N′]rhenium(I)

Abstract

In the title compound, [ReBr(C12H9IN2)(CO)3], the coordination geometry of the ReI ion is a distorted fac-ReC3BrN2 octa­hedron, arising from the N,N′-bidentate ligand, a bromide ion and a facial arrangement of three carbonyl ligands. The dihedral angle between the aromatic rings in the 4-iodo-N-(pyridin-2-yl­methyl­idene)aniline ligand is 46.2 (3)°. The bromide ion and its corresponding trans CO mol­ecule are disordered over two sets of sites in a 0.966 (3):0.034 (3) ratio.

Related literature

For the synthesis of the ligand, see: Dehghanpour et al. (2009a [triangle]). For background to diimine complexes and related structures see: Dehghanpour et al. (2009b [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1335-scheme1.jpg

Experimental

Crystal data

  • [ReBr(C12H9IN2)(CO)3]
  • M r = 658.25
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1335-efi1.jpg
  • a = 8.8850 (4) Å
  • b = 9.0239 (4) Å
  • c = 10.9736 (4) Å
  • α = 75.202 (2)°
  • β = 80.885 (3)°
  • γ = 84.668 (3)°
  • V = 838.64 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 11.48 mm−1
  • T = 150 K
  • 0.08 × 0.07 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.463, T max = 0.707
  • 9719 measured reflections
  • 3796 independent reflections
  • 3256 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.108
  • S = 1.04
  • 3796 reflections
  • 212 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 2.74 e Å−3
  • Δρmin = −2.80 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037104/hb5621sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037104/hb5621Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SD would like to acknowledge the Islamic Azad University Research Council for partial support of this work.

supplementary crystallographic information

Comment

In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour et al., 2009a; Dehghanpour et al., 2010), here we report crystal structure of the title complex. The title complex, (I), Fig. 1, was prepared by the reaction of Re(CO)5Br with the bidentate ligand (4-iodophenyl)pyridin-2-ylmethyleneamine (Dehghanpour et al., 2009b);(Scheme I).

The rhenium atom is coordinated by the N1 pyridine and N2 imine atoms, affording a five-membered chelate ring, as well as three carbonyl carbon atoms and a bromide atom. The resulting coordination geometry can be described as distorted octahedral [the main distortion being the N1–Re1–N2 and C3–Re1–N2 angles]. The rhenium–carbonyl bond lengths do not show any significant differences and The Re–N bond lengths are similar and within the range expected for such complexes.

Experimental

A mixture of [Re(CO)5Br] (406 mg, 1 mmol) and ligand (308 mg, 1 mmol) in dry, degassed toluene (30 cm3) was heated to reflux for 4 h under N2 to give a bright red solution. The solvent was removed under vacuum and the crude material recrystallized from CH2Cl2/hexane to give red blocks of (I). Yield: 89%. Calc. for C15H9BrIN2O3Re: C 27.37, H 1.37, N 4.26%; found: C 27.30, H 1.42, N 4.20%.

Refinement

The H(C) atom positions were calculated and refined in isotropic approximatiom within riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ci) where U(Ci) is the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded The Br atom is disordered over two sites in a 0.966 (3):0.034 (3) ratio; the corresponding carbonyl ligand must also be disordered in the reverse sense, but the occurancies of the minor disorder component were too small to model, so C1 and O1 were refined with full occupancies.

Figures

Fig. 1.
A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level [H atoms are represented as spheres of arbitrary radius].

Crystal data

[ReBr(C12H9IN2)(CO)3]Z = 2
Mr = 658.25F(000) = 600
Triclinic, P1Dx = 2.607 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8850 (4) ÅCell parameters from 9719 reflections
b = 9.0239 (4) Åθ = 2.7–27.5°
c = 10.9736 (4) ŵ = 11.48 mm1
α = 75.202 (2)°T = 150 K
β = 80.885 (3)°Block, red
γ = 84.668 (3)°0.08 × 0.07 × 0.03 mm
V = 838.64 (6) Å3

Data collection

Nonius KappaCCD diffractometer3796 independent reflections
Radiation source: fine-focus sealed tube3256 reflections with I > 2σ(I)
graphiteRint = 0.059
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
[var phi] scans and ω scans with κ offsetsh = −10→11
Absorption correction: multi-scan (SORTAV; Blessing, 1995)k = −11→11
Tmin = 0.463, Tmax = 0.707l = −12→14
9719 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0591P)2 + 1.7708P] where P = (Fo2 + 2Fc2)/3
3796 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 2.74 e Å3
1 restraintΔρmin = −2.80 e Å3

Special details

Experimental. multi-scan from symmetry-related measurements SORTAV (Blessing 1995)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Re10.71427 (3)0.42431 (3)0.25069 (2)0.02270 (11)
I11.35429 (6)−0.18136 (6)0.09158 (5)0.03272 (15)
Br10.77459 (9)0.28546 (8)0.47903 (6)0.0279 (2)0.966 (3)
O10.6470 (7)0.5896 (8)−0.0170 (7)0.0374 (14)
O20.6352 (7)0.7283 (6)0.3297 (6)0.0395 (13)
O31.0434 (6)0.5242 (6)0.1639 (5)0.0387 (13)
N10.4879 (7)0.3344 (6)0.3111 (5)0.0222 (12)
N20.7420 (7)0.1892 (6)0.2274 (5)0.0224 (12)
C10.6686 (12)0.5243 (11)0.0821 (10)0.028 (2)
C20.6644 (8)0.6156 (8)0.2979 (7)0.0293 (16)
C30.9211 (9)0.4851 (8)0.1974 (7)0.0270 (15)
C40.3602 (9)0.4075 (8)0.3539 (7)0.0293 (16)
H4A0.36510.51040.35900.035*
C50.2205 (7)0.3394 (7)0.3913 (6)0.0191 (13)
H5A0.13330.39360.42440.023*
C60.2107 (9)0.1929 (9)0.3795 (7)0.0318 (17)
H6A0.11530.14630.40060.038*
C70.3416 (9)0.1134 (9)0.3365 (7)0.0323 (17)
H7A0.33810.01090.32990.039*
C80.4770 (9)0.1874 (8)0.3036 (6)0.0279 (15)
C90.6197 (8)0.1133 (8)0.2602 (6)0.0258 (15)
H9A0.62340.00920.25590.031*
C100.8834 (8)0.1079 (7)0.1978 (6)0.0217 (14)
C110.9899 (8)0.1744 (8)0.0970 (6)0.0257 (15)
H11A0.97050.27640.04950.031*
C121.1240 (9)0.0943 (9)0.0646 (7)0.0310 (16)
H12A1.19530.1396−0.00620.037*
C131.1535 (8)−0.0534 (8)0.1370 (7)0.0261 (15)
C141.0489 (9)−0.1201 (8)0.2407 (6)0.0274 (15)
H14A1.0700−0.22070.29010.033*
C150.9143 (9)−0.0397 (8)0.2718 (6)0.0269 (15)
H15A0.8431−0.08440.34290.032*
Br1A0.652 (6)0.551 (5)0.040 (3)0.030*0.034 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Re10.02352 (18)0.01442 (16)0.02889 (18)−0.00057 (11)−0.00101 (12)−0.00477 (11)
I10.0290 (3)0.0314 (3)0.0382 (3)0.0068 (2)−0.0042 (2)−0.0126 (2)
Br10.0331 (4)0.0230 (4)0.0266 (4)0.0010 (3)−0.0037 (3)−0.0056 (3)
O10.038 (3)0.034 (4)0.038 (4)−0.002 (3)−0.002 (3)−0.007 (3)
O20.046 (3)0.021 (3)0.055 (3)0.001 (2)−0.008 (3)−0.015 (2)
O30.027 (3)0.035 (3)0.051 (3)−0.011 (2)−0.001 (3)−0.004 (3)
N10.024 (3)0.019 (3)0.022 (3)0.001 (2)−0.002 (2)−0.003 (2)
N20.031 (3)0.015 (3)0.020 (3)0.004 (2)−0.003 (2)−0.006 (2)
C10.023 (4)0.016 (5)0.047 (6)−0.002 (3)0.000 (5)−0.016 (4)
C20.024 (4)0.026 (4)0.035 (4)0.002 (3)−0.001 (3)−0.004 (3)
C30.028 (4)0.021 (3)0.030 (4)0.002 (3)−0.009 (3)−0.002 (3)
C40.031 (4)0.022 (4)0.034 (4)0.003 (3)−0.005 (3)−0.006 (3)
C50.015 (3)0.022 (3)0.019 (3)0.001 (3)−0.005 (2)−0.003 (2)
C60.031 (4)0.030 (4)0.033 (4)−0.011 (3)−0.004 (3)−0.002 (3)
C70.040 (4)0.024 (4)0.034 (4)−0.005 (3)−0.007 (3)−0.006 (3)
C80.031 (4)0.028 (4)0.026 (3)0.001 (3)−0.004 (3)−0.009 (3)
C90.033 (4)0.017 (3)0.027 (3)−0.006 (3)−0.002 (3)−0.004 (3)
C100.026 (3)0.015 (3)0.024 (3)0.000 (3)−0.002 (3)−0.007 (3)
C110.029 (4)0.018 (3)0.029 (3)0.003 (3)−0.003 (3)−0.005 (3)
C120.032 (4)0.032 (4)0.028 (4)−0.007 (3)0.007 (3)−0.008 (3)
C130.025 (4)0.025 (4)0.031 (4)0.004 (3)0.000 (3)−0.016 (3)
C140.035 (4)0.022 (3)0.025 (3)0.003 (3)−0.008 (3)−0.006 (3)
C150.035 (4)0.023 (3)0.022 (3)−0.005 (3)−0.004 (3)−0.003 (3)

Geometric parameters (Å, °)

Re1—C21.919 (7)C5—C61.373 (10)
Re1—C31.924 (8)C5—H5A0.9500
Re1—C11.928 (11)C6—C71.391 (11)
Re1—N12.179 (6)C6—H6A0.9500
Re1—N22.188 (5)C7—C81.383 (11)
Re1—Br1A2.43 (3)C7—H7A0.9500
Re1—Br12.6139 (8)C8—C91.447 (10)
I1—C132.096 (7)C9—H9A0.9500
O1—Br1A0.64 (3)C10—C111.383 (9)
O1—C11.133 (13)C10—C151.400 (9)
O2—C21.153 (9)C11—C121.380 (10)
O3—C31.148 (9)C11—H11A0.9500
N1—C41.339 (9)C12—C131.392 (10)
N1—C81.364 (9)C12—H12A0.9500
N2—C91.291 (9)C13—C141.394 (10)
N2—C101.430 (9)C14—C151.381 (10)
C1—Br1A0.50 (3)C14—H14A0.9500
C4—C51.391 (10)C15—H15A0.9500
C4—H4A0.9500
C2—Re1—C388.3 (3)C6—C5—C4119.0 (6)
C2—Re1—C188.8 (4)C6—C5—H5A120.5
C3—Re1—C188.9 (4)C4—C5—H5A120.5
C2—Re1—N196.6 (3)C5—C6—C7119.3 (7)
C3—Re1—N1174.8 (3)C5—C6—H6A120.3
C1—Re1—N192.7 (3)C7—C6—H6A120.3
C2—Re1—N2169.6 (3)C8—C7—C6118.3 (7)
C3—Re1—N299.9 (3)C8—C7—H7A120.8
C1—Re1—N297.5 (3)C6—C7—H7A120.8
N1—Re1—N275.0 (2)N1—C8—C7123.0 (7)
C2—Re1—Br1A88.4 (12)N1—C8—C9114.5 (6)
C3—Re1—Br1A89.8 (12)C7—C8—C9122.4 (7)
C1—Re1—Br1A1.0 (14)N2—C9—C8119.8 (6)
N1—Re1—Br1A91.9 (12)N2—C9—H9A120.1
N2—Re1—Br1A97.8 (12)C8—C9—H9A120.1
C2—Re1—Br191.8 (2)C11—C10—C15119.9 (6)
C3—Re1—Br191.6 (2)C11—C10—N2120.4 (6)
C1—Re1—Br1179.2 (3)C15—C10—N2119.7 (6)
N1—Re1—Br186.79 (14)C12—C11—C10120.8 (6)
N2—Re1—Br181.81 (14)C12—C11—H11A119.6
Br1A—Re1—Br1178.6 (12)C10—C11—H11A119.6
Br1A—O1—C16(5)C11—C12—C13119.2 (6)
C4—N1—C8117.2 (6)C11—C12—H12A120.4
C4—N1—Re1127.3 (5)C13—C12—H12A120.4
C8—N1—Re1115.5 (5)C12—C13—C14120.5 (6)
C9—N2—C10118.1 (6)C12—C13—I1121.0 (5)
C9—N2—Re1115.1 (5)C14—C13—I1118.5 (5)
C10—N2—Re1126.1 (4)C15—C14—C13119.9 (7)
Br1A—C1—O17(7)C15—C14—H14A120.0
Br1A—C1—Re1175 (7)C13—C14—H14A120.0
O1—C1—Re1176.0 (8)C14—C15—C10119.6 (6)
O2—C2—Re1178.0 (7)C14—C15—H15A120.2
O3—C3—Re1178.5 (7)C10—C15—H15A120.2
N1—C4—C5123.0 (7)C1—Br1A—O1167 (10)
N1—C4—H4A118.5C1—Br1A—Re14(6)
C5—C4—H4A118.5O1—Br1A—Re1170 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5621).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009a). Polyhedron, 28, 1205–1210.
  • Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009b). Inorg. Chem. Commun.12, 231–233.
  • Dehghanpour, S., Lipkowski, J., Mahmoudi, A. & Khalaj, M. (2010). J. Coord. Chem.63, 1473–1479.
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography