PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2478.
Published online 2010 September 4. doi:  10.1107/S1600536810035130
PMCID: PMC2983411

Ethyl 4-(2,4-dichloro­phen­yl)-6-(6-meth­oxy-2-naphth­yl)-2-oxocyclo­hex-3-ene-1-carboxyl­ate

Abstract

In the title compound, C26H22Cl2O4, the cyclo­hexenone ring adopts an approximate half-chair conformation, with two C atoms displaced by −0.485 (6) and 0.218 (6) Å from the plane of the other four ring atoms. The dihedral angles between its four almost coplanar [maximum deviation = 0.006 (2) Å] atoms and the benzene and naphthalene ring systems are 59.26 (13) and 79.94 (9)°, respectively. The dihedral angle between the aromatic rings systems is 77.14 (7)°. A short intra­molecular C—H(...)Cl contact generates an S(6) ring. In the crystal, mol­ecules are linked by C—H(...)O and C—H(...)Cl inter­actions to generate a three-dimensional network.

Related literature

For related structures and background references, see: Li et al. (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2478-scheme1.jpg

Experimental

Crystal data

  • C26H22Cl2O4
  • M r = 469.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2478-efi1.jpg
  • a = 14.2156 (4) Å
  • b = 5.8647 (2) Å
  • c = 27.3752 (9) Å
  • β = 94.840 (2)°
  • V = 2274.14 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 120 K
  • 0.20 × 0.10 × 0.07 mm

Data collection

  • Nonius KappaCCD diffractometer
  • 24499 measured reflections
  • 5209 independent reflections
  • 3171 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.160
  • S = 1.05
  • 5209 reflections
  • 291 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor 1997 [triangle]), SCALEPACK and SORTAV (Blessing, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035130/xu5016sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035130/xu5016Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ANM thanks the University of Mysore for research facilities. HSY thanks the University of Mysore for sanctioning sabbatical leave.

supplementary crystallographic information

Comment

The structure of the title compound, (I), (Fig. 1), was determined as part of our ongoing structural studies (Li et al., 2009a,b) of substituted cyclohexenones.

The cyclohexenone ring (C7–C12) in (I) adopts an approximate half-chair conformation with C7/C8/C11/C12 statistically coplanar [r.m.s. deviation = 0.0004 Å; individual deviations = 0.0006 (19), -0.0003 (9), 0.0003 (9) and -0.006 (2) Å, respectively] and C9 and C10 displaced from their mean plane by -0.485 (6) and 0.218 (6) Å, respectively. Unlike the equivalent atoms in the related structures ethyl 6-(6-methoxy-2-naphthyl)-4-(4-methylphenyl)-2-oxocyclohex-3- ene-1-carboxylate, (II), (Li et al., 2009a) and ethyl 6-(6-methoxy-2-naphthyl)-2-oxo-4-(2-thienyl)cyclohex-3- ene-1-carboxylate, (III), (Li et al., 2009b), C9 and C10 in (I) do not display positional disorder. Both atoms are stereogenic centres: in the arbitrarily chosen asymmetric molecule, C9 has R configuration and C10 has S, but crystal symmetry generates a racemic mixture of enantiomers.

The dihedral angles between C7/C8/C11/C12 and the benzene (C1–C6) and naphthalene (C13–C22) ring systems are 59.26 (13) and 79.94 (9)°, respectively. The dihedral angle between the aromatic rings systems in (I) is 77.14 (7)°: equivalent values in (II) and (III) are 73.10 (5) and 86.04 (16)°, respectively. The naphthalene ring system (atoms C13–C22) in (I) shows rather high deviations from planarity: the r.m.s. deviation is 0.044Å and maximum deviations are 0.074 (2)Å for C13 and -0.055 (2) for C21. If the two benzene rings (C13/C14/C15/C16/C21/C22 and C16–C21) are considered separately, their r.m.s. deviations are 0.018 and 0.007 Å, respectively, and the dihedral angle between them is 4.85 (16)°. Atom C23 of the terminal methyl group is displaced from the naphthalene ring by 0.466 (4) Å. A short intramolecular C8—H8B···Cl2 contact (Table 1) generates an S(6) ring.

In the crystal, the molecules are linked by C—H···O and C—H···Cl interactions to generate a three-dimensional network.

Experimental

(2E)-1-(2,4-Dichlorophenyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (1.8 g, 5 mmol) and ethyl acetoacetate (0.65 g, 5 mmol) were refluxed for 4 hr in 15 ml of ethanol in the presence of 0.8 ml 10% NaOH. The mixture was cooled to room temperature and the reaction mass was filtered and recrystallized using acetonitrile to yield colourless blocks of (I) (m.p.: 393–395 K).

Refinement

The hydrogen atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating rigid-group model was applied to the methyl group.

Figures

Fig. 1.
View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Crystal data

C26H22Cl2O4F(000) = 976
Mr = 469.34Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19625 reflections
a = 14.2156 (4) Åθ = 2.9–27.5°
b = 5.8647 (2) ŵ = 0.32 mm1
c = 27.3752 (9) ÅT = 120 K
β = 94.840 (2)°Block, colourless
V = 2274.14 (13) Å30.20 × 0.10 × 0.07 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer3171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
graphiteθmax = 27.5°, θmin = 3.1°
ω and [var phi] scansh = −18→18
24499 measured reflectionsk = −7→7
5209 independent reflectionsl = −35→35

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0569P)2 + 1.4128P] where P = (Fo2 + 2Fc2)/3
5209 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2743 (2)1.2107 (5)−0.05812 (11)0.0325 (7)
C20.3364 (2)1.0439 (5)−0.04033 (11)0.0317 (7)
H20.39621.0277−0.05300.038*
C30.3101 (2)0.9003 (5)−0.00372 (10)0.0271 (7)
C40.2229 (2)0.9190 (5)0.01610 (10)0.0268 (7)
C50.1630 (2)1.0922 (6)−0.00319 (11)0.0337 (8)
H50.10311.11000.00930.040*
C60.1876 (2)1.2388 (6)−0.03978 (12)0.0364 (8)
H60.14571.3558−0.05190.044*
C70.18917 (19)0.7672 (5)0.05408 (10)0.0256 (7)
C80.2417 (2)0.7606 (5)0.10417 (10)0.0279 (7)
H8A0.22940.90380.12170.033*
H8B0.31030.75290.10050.033*
C90.21375 (19)0.5572 (5)0.13528 (10)0.0272 (7)
H90.23800.41570.12030.033*
C100.10628 (19)0.5373 (6)0.13368 (11)0.0304 (7)
H100.08100.67800.14860.036*
C110.0638 (2)0.5189 (6)0.08069 (11)0.0312 (7)
C120.1079 (2)0.6548 (5)0.04425 (11)0.0311 (7)
H120.07740.66390.01210.037*
C130.26075 (19)0.5753 (5)0.18738 (10)0.0256 (7)
C140.24668 (19)0.7727 (5)0.21574 (10)0.0274 (7)
H140.20400.88690.20310.033*
C150.29374 (19)0.8015 (5)0.26125 (10)0.0249 (6)
H150.28190.93350.27990.030*
C160.35953 (18)0.6376 (5)0.28076 (9)0.0203 (6)
C170.41590 (18)0.6728 (5)0.32532 (10)0.0220 (6)
H170.40880.80830.34370.026*
C180.48025 (19)0.5124 (5)0.34184 (10)0.0232 (6)
C190.49063 (19)0.3078 (5)0.31567 (10)0.0239 (6)
H190.53510.19650.32800.029*
C200.43709 (19)0.2697 (5)0.27280 (10)0.0237 (6)
H200.44430.13110.25560.028*
C210.37076 (18)0.4340 (5)0.25358 (10)0.0213 (6)
C220.31971 (19)0.4083 (5)0.20690 (10)0.0235 (6)
H220.32670.27190.18890.028*
C230.5480 (2)0.7485 (5)0.40688 (11)0.0318 (7)
H23A0.59840.74510.43360.048*
H23B0.48790.78520.42020.048*
H23C0.56240.86470.38290.048*
C240.0723 (2)0.3334 (6)0.16028 (11)0.0324 (7)
C25−0.0480 (3)0.1826 (8)0.20559 (15)0.0657 (12)
H25A−0.08500.23420.23260.079*
H25B0.00140.07640.21950.079*
C26−0.1126 (3)0.0587 (8)0.16739 (18)0.0768 (14)
H26A−0.1457−0.06400.18320.115*
H26B−0.0750−0.00620.14240.115*
H26C−0.15880.16620.15190.115*
O1−0.00458 (15)0.3976 (4)0.06997 (8)0.0436 (6)
O20.54118 (13)0.5310 (3)0.38362 (7)0.0301 (5)
O3−0.00269 (15)0.3819 (4)0.18412 (9)0.0468 (6)
O40.10805 (16)0.1490 (4)0.15843 (9)0.0468 (6)
Cl10.30566 (6)1.39074 (16)−0.10447 (3)0.0484 (3)
Cl20.38884 (5)0.68373 (14)0.01551 (3)0.0360 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0409 (18)0.0292 (18)0.0274 (17)−0.0051 (15)0.0038 (14)0.0047 (14)
C20.0321 (16)0.0368 (19)0.0272 (16)−0.0022 (15)0.0085 (13)−0.0014 (15)
C30.0288 (15)0.0312 (17)0.0210 (15)0.0002 (13)0.0014 (12)−0.0018 (13)
C40.0297 (15)0.0310 (17)0.0193 (15)−0.0038 (14)0.0005 (12)0.0004 (13)
C50.0286 (16)0.043 (2)0.0297 (17)0.0020 (15)0.0037 (13)0.0088 (15)
C60.0388 (18)0.0384 (19)0.0318 (18)0.0057 (15)0.0021 (15)0.0072 (15)
C70.0262 (15)0.0312 (17)0.0195 (15)0.0029 (13)0.0025 (12)0.0003 (13)
C80.0254 (15)0.0380 (18)0.0198 (15)0.0001 (14)−0.0003 (12)0.0000 (13)
C90.0273 (15)0.0326 (18)0.0211 (15)−0.0001 (13)−0.0006 (12)0.0021 (13)
C100.0255 (15)0.0407 (19)0.0247 (16)−0.0023 (14)0.0008 (13)0.0023 (14)
C110.0257 (15)0.0404 (19)0.0265 (17)−0.0059 (15)−0.0041 (13)0.0032 (15)
C120.0301 (16)0.0409 (19)0.0215 (15)−0.0027 (15)−0.0026 (13)0.0041 (14)
C130.0266 (15)0.0308 (17)0.0190 (15)−0.0062 (13)0.0002 (12)0.0028 (13)
C140.0251 (15)0.0311 (17)0.0254 (16)0.0000 (13)−0.0009 (13)0.0041 (14)
C150.0249 (14)0.0259 (16)0.0241 (15)0.0023 (13)0.0036 (12)−0.0004 (13)
C160.0198 (13)0.0254 (16)0.0157 (13)−0.0001 (12)0.0020 (11)0.0037 (12)
C170.0241 (14)0.0233 (15)0.0186 (14)0.0013 (12)0.0015 (11)−0.0012 (12)
C180.0245 (14)0.0294 (16)0.0156 (14)−0.0020 (13)0.0015 (11)0.0011 (13)
C190.0260 (14)0.0231 (16)0.0226 (15)0.0009 (13)0.0017 (12)0.0010 (13)
C200.0285 (15)0.0214 (16)0.0218 (15)−0.0022 (12)0.0051 (12)−0.0011 (12)
C210.0210 (14)0.0238 (16)0.0194 (14)−0.0037 (12)0.0033 (11)0.0010 (12)
C220.0262 (14)0.0252 (16)0.0194 (14)−0.0062 (13)0.0027 (12)−0.0005 (13)
C230.0350 (17)0.0341 (18)0.0250 (16)−0.0030 (14)−0.0046 (13)−0.0031 (14)
C240.0263 (16)0.041 (2)0.0288 (17)−0.0013 (15)−0.0035 (13)0.0014 (16)
C250.062 (3)0.081 (3)0.058 (3)−0.017 (2)0.029 (2)0.015 (2)
C260.055 (3)0.074 (3)0.104 (4)−0.025 (2)0.019 (3)−0.006 (3)
O10.0360 (12)0.0607 (16)0.0325 (13)−0.0196 (12)−0.0070 (10)0.0123 (12)
O20.0363 (12)0.0296 (12)0.0221 (11)0.0050 (9)−0.0103 (9)−0.0021 (9)
O30.0386 (13)0.0583 (16)0.0455 (14)−0.0024 (12)0.0160 (11)−0.0035 (13)
O40.0385 (13)0.0447 (16)0.0560 (16)0.0066 (12)−0.0034 (12)0.0070 (13)
Cl10.0578 (6)0.0480 (6)0.0407 (5)−0.0047 (4)0.0109 (4)0.0188 (4)
Cl20.0380 (4)0.0395 (5)0.0312 (4)0.0087 (4)0.0071 (3)0.0055 (4)

Geometric parameters (Å, °)

C1—C21.378 (4)C14—H140.9500
C1—C61.380 (4)C15—C161.414 (4)
C1—Cl11.737 (3)C15—H150.9500
C2—C31.384 (4)C16—C171.417 (4)
C2—H20.9500C16—C211.423 (4)
C3—C41.399 (4)C17—C181.362 (4)
C3—Cl21.745 (3)C17—H170.9500
C4—C51.400 (4)C18—O21.379 (3)
C4—C71.479 (4)C18—C191.412 (4)
C5—C61.387 (4)C19—C201.362 (4)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—C211.418 (4)
C7—C121.338 (4)C20—H200.9500
C7—C81.506 (4)C21—C221.423 (4)
C8—C91.537 (4)C22—H220.9500
C8—H8A0.9900C23—O21.425 (3)
C8—H8B0.9900C23—H23A0.9800
C9—C131.527 (4)C23—H23B0.9800
C9—C101.529 (4)C23—H23C0.9800
C9—H91.0000C24—O41.198 (4)
C10—C241.501 (4)C24—O31.328 (4)
C10—C111.528 (4)C25—O31.480 (4)
C10—H101.0000C25—C261.517 (6)
C11—O11.220 (3)C25—H25A0.9900
C11—C121.459 (4)C25—H25B0.9900
C12—H120.9500C26—H26A0.9800
C13—C221.368 (4)C26—H26B0.9800
C13—C141.417 (4)C26—H26C0.9800
C14—C151.374 (4)
C2—C1—C6121.4 (3)C15—C14—H14119.4
C2—C1—Cl1119.6 (2)C13—C14—H14119.4
C6—C1—Cl1119.0 (2)C14—C15—C16121.0 (3)
C1—C2—C3118.9 (3)C14—C15—H15119.5
C1—C2—H2120.5C16—C15—H15119.5
C3—C2—H2120.5C15—C16—C17122.3 (3)
C2—C3—C4122.4 (3)C15—C16—C21118.2 (2)
C2—C3—Cl2117.1 (2)C17—C16—C21119.5 (2)
C4—C3—Cl2120.5 (2)C18—C17—C16120.0 (3)
C3—C4—C5116.2 (3)C18—C17—H17120.0
C3—C4—C7125.2 (3)C16—C17—H17120.0
C5—C4—C7118.6 (3)C17—C18—O2125.3 (3)
C6—C5—C4122.7 (3)C17—C18—C19120.9 (2)
C6—C5—H5118.7O2—C18—C19113.8 (2)
C4—C5—H5118.7C20—C19—C18120.1 (3)
C1—C6—C5118.4 (3)C20—C19—H19119.9
C1—C6—H6120.8C18—C19—H19119.9
C5—C6—H6120.8C19—C20—C21120.9 (3)
C12—C7—C4118.7 (3)C19—C20—H20119.5
C12—C7—C8121.6 (3)C21—C20—H20119.5
C4—C7—C8119.3 (2)C20—C21—C16118.5 (2)
C7—C8—C9113.1 (2)C20—C21—C22122.3 (3)
C7—C8—H8A109.0C16—C21—C22119.2 (2)
C9—C8—H8A109.0C13—C22—C21121.6 (3)
C7—C8—H8B109.0C13—C22—H22119.2
C9—C8—H8B109.0C21—C22—H22119.2
H8A—C8—H8B107.8O2—C23—H23A109.5
C13—C9—C10112.9 (2)O2—C23—H23B109.5
C13—C9—C8110.5 (2)H23A—C23—H23B109.5
C10—C9—C8110.4 (2)O2—C23—H23C109.5
C13—C9—H9107.6H23A—C23—H23C109.5
C10—C9—H9107.6H23B—C23—H23C109.5
C8—C9—H9107.6O4—C24—O3125.1 (3)
C24—C10—C11106.7 (2)O4—C24—C10123.0 (3)
C24—C10—C9114.1 (2)O3—C24—C10111.9 (3)
C11—C10—C9110.3 (2)O3—C25—C26111.3 (3)
C24—C10—H10108.6O3—C25—H25A109.4
C11—C10—H10108.6C26—C25—H25A109.4
C9—C10—H10108.6O3—C25—H25B109.4
O1—C11—C12122.2 (3)C26—C25—H25B109.4
O1—C11—C10120.8 (3)H25A—C25—H25B108.0
C12—C11—C10116.9 (2)C25—C26—H26A109.5
C7—C12—C11123.0 (3)C25—C26—H26B109.5
C7—C12—H12118.5H26A—C26—H26B109.5
C11—C12—H12118.5C25—C26—H26C109.5
C22—C13—C14118.7 (3)H26A—C26—H26C109.5
C22—C13—C9121.4 (3)H26B—C26—H26C109.5
C14—C13—C9119.8 (3)C18—O2—C23117.1 (2)
C15—C14—C13121.1 (3)C24—O3—C25114.9 (3)
C6—C1—C2—C30.8 (5)C8—C9—C13—C22−120.9 (3)
Cl1—C1—C2—C3−179.4 (2)C10—C9—C13—C14−67.7 (3)
C1—C2—C3—C4−0.3 (4)C8—C9—C13—C1456.4 (3)
C1—C2—C3—Cl2177.1 (2)C22—C13—C14—C152.5 (4)
C2—C3—C4—C50.0 (4)C9—C13—C14—C15−174.9 (3)
Cl2—C3—C4—C5−177.3 (2)C13—C14—C15—C161.6 (4)
C2—C3—C4—C7178.0 (3)C14—C15—C16—C17173.6 (3)
Cl2—C3—C4—C70.7 (4)C14—C15—C16—C21−4.4 (4)
C3—C4—C5—C6−0.1 (5)C15—C16—C17—C18−178.1 (3)
C7—C4—C5—C6−178.3 (3)C21—C16—C17—C180.0 (4)
C2—C1—C6—C5−1.0 (5)C16—C17—C18—O2177.6 (2)
Cl1—C1—C6—C5179.2 (2)C16—C17—C18—C19−1.3 (4)
C4—C5—C6—C10.6 (5)C17—C18—C19—C201.1 (4)
C3—C4—C7—C12−122.5 (3)O2—C18—C19—C20−177.9 (2)
C5—C4—C7—C1255.4 (4)C18—C19—C20—C210.4 (4)
C3—C4—C7—C863.4 (4)C19—C20—C21—C16−1.7 (4)
C5—C4—C7—C8−118.6 (3)C19—C20—C21—C22174.4 (3)
C12—C7—C8—C920.0 (4)C15—C16—C21—C20179.6 (2)
C4—C7—C8—C9−166.2 (3)C17—C16—C21—C201.4 (4)
C7—C8—C9—C13−173.5 (2)C15—C16—C21—C223.4 (4)
C7—C8—C9—C10−47.9 (3)C17—C16—C21—C22−174.8 (2)
C13—C9—C10—C24−59.8 (3)C14—C13—C22—C21−3.5 (4)
C8—C9—C10—C24176.0 (3)C9—C13—C22—C21173.9 (2)
C13—C9—C10—C11−179.8 (3)C20—C21—C22—C13−175.5 (3)
C8—C9—C10—C1156.0 (3)C16—C21—C22—C130.6 (4)
C24—C10—C11—O119.1 (4)C11—C10—C24—O481.0 (4)
C9—C10—C11—O1143.5 (3)C9—C10—C24—O4−41.0 (4)
C24—C10—C11—C12−161.8 (3)C11—C10—C24—O3−96.8 (3)
C9—C10—C11—C12−37.4 (4)C9—C10—C24—O3141.2 (3)
C4—C7—C12—C11−173.8 (3)C17—C18—O2—C23−10.7 (4)
C8—C7—C12—C110.1 (5)C19—C18—O2—C23168.3 (2)
O1—C11—C12—C7−171.8 (3)O4—C24—O3—C25−5.8 (5)
C10—C11—C12—C79.1 (5)C10—C24—O3—C25172.0 (3)
C10—C9—C13—C22114.9 (3)C26—C25—O3—C24−81.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.493.411 (4)164
C8—H8A···O4ii0.992.523.388 (4)146
C8—H8B···Cl20.992.693.365 (3)125
C12—H12···O1iii0.952.423.354 (4)168
C14—H14···O4ii0.952.333.270 (4)170
C17—H17···Cl1iv0.952.763.635 (3)153

Symmetry codes: (i) −x, −y+2, −z; (ii) x, y+1, z; (iii) −x, −y+1, −z; (iv) x, −y+5/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5016).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009a). Acta Cryst. E65, o1186. [PMC free article] [PubMed]
  • Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009b). Acta Cryst. E65, o1533. [PMC free article] [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography