PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2664.
Published online 2010 September 30. doi:  10.1107/S1600536810038067
PMCID: PMC2983408

1-Benzoyl-3,6-diphenyl-1,4-dihydro-1,2,4,5-tetra­zine

Abstract

In the title compound, C21H16N4O, the central tetra­zine ring adopts an unsymmetrical boat conformation with the two N atoms as the bow and stern. The crystal packing is stabilized by inter­molecular N—H—O hydrogen bonds.

Related literature

For related structures, see: Xu et al. (2010 [triangle]); Hu et al. (2004 [triangle]); Rao et al. (2006 [triangle]). For applications of 1,2,4,5-tetra­zine derivatives, see: Sauer et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2664-scheme1.jpg

Experimental

Crystal data

  • C21H16N4O
  • M r = 340.38
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2664-efi1.jpg
  • a = 7.1100 (19) Å
  • b = 12.115 (3) Å
  • c = 19.884 (6) Å
  • V = 1712.7 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 93 K
  • 0.43 × 0.27 × 0.27 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer
  • 13708 measured reflections
  • 2254 independent reflections
  • 2128 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.085
  • S = 1.00
  • 2254 reflections
  • 239 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038067/bq2236sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038067/bq2236Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are very grateful to the Science Foundation for Excellent Youth Scholars of the Department of Education of Zhejiang Province and the Educational Commission of Zhejiang Province of China (Y201018289).

supplementary crystallographic information

Comment

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer, 1996). Dihydro-1,2,4,5- tetrazine has four isomers, namely 1,2-, 1,4-, 1,6- and 3,6-dihydro-1,2,4,5- tetrazines. The 1,4-dihydro structures (Rao et al., 2006) were found to have potential antitumor properties. In continuation of our work on the structure-activity relationship of dihydro-1,2,4,5-tetrazine derivatives (Hu et al., 2004 & Xu et al., 2010), we report here the crystal structure of the title compound (I) (Fig. 1).

In the tetrazine ring, atoms N2, C3, N5 and C6 are almost coplanar, while atoms N1 and N4 deviate from the plane by 0.447 (2) and 0.330 (2) Å, respectively. The N1/N2/C6 and C3/N4/N5 planes make dihedral angles of 35.76 (2)° and 27.66 (2)°, respectively, with the N2/C3/N5/C6 plane, i.e. the tetrazine ring adopts an unsymmetrical boat conformation. The benzene rings C7—C12, C13—C18 and C20—C25 make dihedral angles of 22.88 (2)°, 17.80 (2)° and 87.09 (2)° with the N2/C3/N5/C6 plane, respectively. Atom N1 is almost sp2 hybridized due to the angles around it add up to 358.0 (2)°.

The crystal packing (Fig.2) is stabilized by intermolecular N—H—O interactions between a hydrogen on nitrogen N(4) and the O atom of carbonyl group, with a N—H—O separation of 2.806 (2) Å (Table 2).

Experimental

To a solution of 1,2-dihydro-1,2,4,5-tetrazine (0.47 g, 2 mmol) in chloroform (20 ml) was added dropwise benzoyl chloride (0.28 g, 2 mmol) in chloroform (10 ml) under stirring at room temperature using pyridine (0.17 g, 2.1 mmol) as the catalyst. After stirring for 2 h, the solvent was distilled off under vacuum. The residue was chromatographed on a silica gel column using cyclohexane-dichloromethane (V/V, 1:2) as the eluent to get the yellow solid (0.37 g, 55%). An anhydrous ethanol solution of the title compound was stood at room temperature, and by slowly evaporating ethanol from the solution, yellow crystals suitable for X-ray diffraction analysis were isolated one month later. m.p.: 500–501 K.

Refinement

H atoms were placed in calculated positions with N—H = 0.86 Å, C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). 1662 Friedel pairs were averaged before the final refinement as the absolute structure could not be determined unambiguously.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
Crystal structure of (I) viewed down the a axis. N—H···O hydrogen bondings are shown as dashed lines.

Crystal data

C21H16N4OF(000) = 712
Mr = 340.38Dx = 1.320 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2254 reflections
a = 7.1100 (19) Åθ = 3.4–27.5°
b = 12.115 (3) ŵ = 0.09 mm1
c = 19.884 (6) ÅT = 93 K
V = 1712.7 (8) Å3Column, yellow
Z = 40.43 × 0.27 × 0.27 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer2128 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.032
graphiteθmax = 27.5°, θmin = 3.0°
Detector resolution: 28.5714 pixels mm-1h = −9→9
[var phi] and ω scansk = −15→14
13708 measured reflectionsl = −24→25
2254 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0577P)2 + 0.196P] where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.41566 (18)0.55133 (9)0.57735 (6)0.0169 (3)
N10.1772 (2)0.56642 (12)0.50300 (7)0.0160 (3)
N20.1136 (2)0.55047 (12)0.43512 (7)0.0166 (3)
N40.0860 (2)0.74205 (12)0.44154 (7)0.0166 (3)
N50.0366 (2)0.74009 (12)0.50949 (7)0.0171 (3)
C30.0818 (2)0.64438 (14)0.40646 (8)0.0155 (3)
C60.0824 (2)0.65060 (13)0.53963 (8)0.0153 (3)
C70.0230 (2)0.62957 (14)0.60945 (8)0.0166 (4)
C80.0051 (3)0.52210 (15)0.63299 (9)0.0203 (4)
H80.03570.46200.60430.024*
C9−0.0570 (3)0.50186 (15)0.69807 (9)0.0237 (4)
H9−0.06890.42810.71370.028*
C10−0.1015 (3)0.58866 (16)0.74016 (9)0.0234 (4)
H10−0.14380.57470.78470.028*
C11−0.0842 (3)0.69637 (16)0.71726 (9)0.0230 (4)
H11−0.11440.75610.74630.028*
C12−0.0230 (3)0.71750 (15)0.65229 (9)0.0197 (4)
H12−0.01240.79140.63680.024*
C130.0390 (2)0.64618 (14)0.33354 (8)0.0163 (3)
C140.1052 (3)0.55940 (15)0.29386 (9)0.0203 (4)
H140.17290.50040.31400.024*
C150.0725 (3)0.55907 (16)0.22504 (9)0.0225 (4)
H150.11690.49960.19820.027*
C16−0.0250 (3)0.64547 (16)0.19537 (9)0.0217 (4)
H16−0.04680.64530.14820.026*
C17−0.0907 (3)0.73210 (16)0.23452 (9)0.0234 (4)
H17−0.15700.79140.21410.028*
C18−0.0594 (3)0.73225 (15)0.30386 (9)0.0200 (4)
H18−0.10540.79130.33070.024*
C190.3449 (2)0.52356 (13)0.52322 (8)0.0141 (3)
C200.4384 (2)0.44072 (14)0.47866 (8)0.0153 (3)
C210.6317 (3)0.45175 (15)0.46805 (9)0.0197 (4)
H210.69760.51230.48720.024*
C220.7276 (3)0.37442 (15)0.42963 (10)0.0242 (4)
H220.85830.38330.42110.029*
C230.6319 (3)0.28419 (16)0.40369 (9)0.0221 (4)
H230.69780.23020.37820.027*
C240.4404 (3)0.27244 (15)0.41477 (8)0.0207 (4)
H240.37570.21040.39690.025*
C250.3424 (3)0.35102 (14)0.45181 (9)0.0187 (4)
H250.21080.34350.45870.022*
H4N0.048 (3)0.8053 (17)0.4209 (10)0.020 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0209 (6)0.0155 (6)0.0144 (5)−0.0013 (5)−0.0018 (5)0.0010 (4)
N10.0183 (7)0.0151 (7)0.0145 (6)0.0020 (6)−0.0008 (6)−0.0025 (6)
N20.0181 (7)0.0185 (7)0.0132 (6)0.0027 (6)−0.0010 (6)−0.0031 (6)
N40.0226 (7)0.0142 (7)0.0129 (6)0.0022 (6)0.0006 (6)−0.0005 (5)
N50.0198 (7)0.0172 (7)0.0145 (7)0.0004 (6)0.0018 (6)−0.0028 (5)
C30.0140 (8)0.0153 (8)0.0171 (7)0.0000 (7)0.0003 (6)−0.0029 (6)
C60.0164 (8)0.0126 (8)0.0170 (8)0.0012 (7)−0.0021 (6)−0.0039 (6)
C70.0140 (8)0.0185 (9)0.0172 (8)−0.0001 (7)−0.0017 (6)−0.0020 (7)
C80.0201 (9)0.0174 (8)0.0233 (8)−0.0022 (7)0.0023 (7)−0.0025 (7)
C90.0226 (9)0.0227 (10)0.0256 (9)−0.0035 (8)0.0032 (8)0.0035 (7)
C100.0214 (9)0.0323 (10)0.0165 (8)−0.0013 (8)0.0031 (7)0.0020 (7)
C110.0239 (9)0.0273 (10)0.0179 (8)0.0037 (8)0.0005 (7)−0.0052 (7)
C120.0231 (9)0.0179 (8)0.0181 (8)0.0039 (8)−0.0008 (7)−0.0019 (7)
C130.0141 (8)0.0184 (8)0.0162 (7)−0.0025 (7)0.0005 (6)−0.0009 (6)
C140.0222 (9)0.0180 (9)0.0206 (8)0.0016 (7)−0.0017 (7)−0.0019 (7)
C150.0240 (9)0.0241 (9)0.0195 (8)−0.0004 (9)0.0015 (7)−0.0060 (7)
C160.0200 (8)0.0303 (10)0.0148 (7)−0.0042 (8)−0.0006 (7)−0.0006 (7)
C170.0235 (9)0.0256 (10)0.0210 (8)0.0022 (8)−0.0044 (7)0.0016 (7)
C180.0197 (9)0.0213 (9)0.0191 (8)0.0023 (8)−0.0005 (7)−0.0023 (7)
C190.0173 (8)0.0108 (7)0.0143 (7)−0.0013 (7)0.0017 (6)0.0027 (6)
C200.0197 (8)0.0141 (8)0.0121 (7)0.0015 (7)−0.0004 (6)0.0017 (6)
C210.0189 (9)0.0183 (9)0.0219 (8)−0.0006 (7)−0.0013 (7)0.0003 (7)
C220.0180 (9)0.0276 (10)0.0269 (9)0.0035 (8)0.0017 (7)−0.0001 (8)
C230.0254 (10)0.0218 (9)0.0192 (8)0.0093 (8)0.0009 (7)−0.0007 (7)
C240.0262 (9)0.0162 (8)0.0197 (8)0.0018 (8)−0.0054 (7)−0.0025 (7)
C250.0191 (8)0.0162 (8)0.0208 (8)0.0008 (8)−0.0011 (7)−0.0008 (7)

Geometric parameters (Å, °)

O1—C191.235 (2)C13—C141.396 (2)
N1—C191.361 (2)C14—C151.388 (2)
N1—C61.423 (2)C14—H140.9500
N1—N21.4363 (19)C15—C161.387 (3)
N2—C31.292 (2)C15—H150.9500
N4—C31.374 (2)C16—C171.388 (3)
N4—N51.3961 (19)C16—H160.9500
N4—H4N0.91 (2)C17—C181.397 (2)
N5—C61.281 (2)C17—H170.9500
C3—C131.482 (2)C18—H180.9500
C6—C71.473 (2)C19—C201.495 (2)
C7—C81.389 (3)C20—C251.390 (2)
C7—C121.403 (2)C20—C211.396 (2)
C8—C91.389 (3)C21—C221.388 (3)
C8—H80.9500C21—H210.9500
C9—C101.381 (3)C22—C231.387 (3)
C9—H90.9500C22—H220.9500
C10—C111.388 (3)C23—C241.387 (3)
C10—H100.9500C23—H230.9500
C11—C121.387 (2)C24—C251.391 (3)
C11—H110.9500C24—H240.9500
C12—H120.9500C25—H250.9500
C13—C181.387 (2)
C19—N1—C6122.48 (14)C15—C14—H14119.9
C19—N1—N2120.12 (13)C13—C14—H14119.9
C6—N1—N2115.36 (14)C16—C15—C14120.06 (17)
C3—N2—N1110.55 (13)C16—C15—H15120.0
C3—N4—N5118.11 (14)C14—C15—H15120.0
C3—N4—H4N119.3 (13)C15—C16—C17120.02 (16)
N5—N4—H4N112.0 (13)C15—C16—H16120.0
C6—N5—N4113.79 (14)C17—C16—H16120.0
N2—C3—N4122.04 (14)C16—C17—C18120.08 (18)
N2—C3—C13118.71 (15)C16—C17—H17120.0
N4—C3—C13119.25 (15)C18—C17—H17120.0
N5—C6—N1119.17 (15)C13—C18—C17119.95 (17)
N5—C6—C7120.97 (15)C13—C18—H18120.0
N1—C6—C7119.61 (15)C17—C18—H18120.0
C8—C7—C12119.05 (16)O1—C19—N1120.69 (15)
C8—C7—C6120.39 (15)O1—C19—C20121.22 (15)
C12—C7—C6120.52 (15)N1—C19—C20118.08 (14)
C9—C8—C7120.56 (17)C25—C20—C21120.00 (17)
C9—C8—H8119.7C25—C20—C19122.27 (16)
C7—C8—H8119.7C21—C20—C19117.59 (16)
C10—C9—C8120.20 (17)C22—C21—C20120.15 (18)
C10—C9—H9119.9C22—C21—H21119.9
C8—C9—H9119.9C20—C21—H21119.9
C9—C10—C11119.80 (16)C23—C22—C21119.68 (18)
C9—C10—H10120.1C23—C22—H22120.2
C11—C10—H10120.1C21—C22—H22120.2
C12—C11—C10120.47 (17)C24—C23—C22120.24 (18)
C12—C11—H11119.8C24—C23—H23119.9
C10—C11—H11119.8C22—C23—H23119.9
C11—C12—C7119.92 (17)C23—C24—C25120.37 (18)
C11—C12—H12120.0C23—C24—H24119.8
C7—C12—H12120.0C25—C24—H24119.8
C18—C13—C14119.71 (15)C20—C25—C24119.52 (17)
C18—C13—C3122.06 (15)C20—C25—H25120.2
C14—C13—C3118.20 (16)C24—C25—H25120.2
C15—C14—C13120.18 (17)
C19—N1—N2—C3−123.18 (17)N2—C3—C13—C14−25.1 (2)
C6—N1—N2—C341.0 (2)N4—C3—C13—C14155.04 (17)
C3—N4—N5—C633.1 (2)C18—C13—C14—C15−0.1 (3)
N1—N2—C3—N4−8.0 (2)C3—C13—C14—C15−178.39 (17)
N1—N2—C3—C13172.13 (14)C13—C14—C15—C160.5 (3)
N5—N4—C3—N2−30.0 (2)C14—C15—C16—C17−0.3 (3)
N5—N4—C3—C13149.85 (15)C15—C16—C17—C18−0.2 (3)
N4—N5—C6—N10.9 (2)C14—C13—C18—C17−0.4 (3)
N4—N5—C6—C7−173.36 (15)C3—C13—C18—C17177.78 (17)
C19—N1—C6—N5124.94 (18)C16—C17—C18—C130.6 (3)
N2—N1—C6—N5−38.8 (2)C6—N1—C19—O15.0 (2)
C19—N1—C6—C7−60.7 (2)N2—N1—C19—O1168.06 (15)
N2—N1—C6—C7135.50 (16)C6—N1—C19—C20−176.05 (15)
N5—C6—C7—C8154.45 (17)N2—N1—C19—C20−13.0 (2)
N1—C6—C7—C8−19.8 (2)O1—C19—C20—C25130.67 (18)
N5—C6—C7—C12−23.1 (3)N1—C19—C20—C25−48.2 (2)
N1—C6—C7—C12162.63 (17)O1—C19—C20—C21−45.1 (2)
C12—C7—C8—C9−0.1 (3)N1—C19—C20—C21136.01 (17)
C6—C7—C8—C9−177.77 (17)C25—C20—C21—C221.2 (3)
C7—C8—C9—C10−0.1 (3)C19—C20—C21—C22177.08 (16)
C8—C9—C10—C110.1 (3)C20—C21—C22—C23−2.1 (3)
C9—C10—C11—C120.2 (3)C21—C22—C23—C241.4 (3)
C10—C11—C12—C7−0.5 (3)C22—C23—C24—C250.1 (3)
C8—C7—C12—C110.4 (3)C21—C20—C25—C240.3 (3)
C6—C7—C12—C11178.06 (17)C19—C20—C25—C24−175.30 (15)
N2—C3—C13—C18156.66 (17)C23—C24—C25—C20−1.0 (3)
N4—C3—C13—C18−23.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4N···O1i0.91 (2)1.97 (2)2.806 (2)150.9 (18)

Symmetry codes: (i) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2236).

References

  • Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett.14, 1177–1181. [PubMed]
  • Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett.16, 3702–3705. [PubMed]
  • Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem.30, 260–265.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography