PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2686.
Published online 2010 September 30. doi:  10.1107/S1600536810038444
PMCID: PMC2983406

1-Benzyl­idene-4-ethyl­thio­semicarbazide

Abstract

The title compound, C10H13N3S, was prepared by the reaction of 4-ethyl­thio­semicarbazide and benzaldehyde. The dihedral angle between the benzene ring and the thio­urea unit is 8.96 (7)° and an intra­molecular N—H(...)N hydrogen bond generates an S(5) ring. In the crystal, inversion dimers linked by pairs of N—H(...)S hydrogen bonds generate R 2 2(8) loops.

Related literature

For background to the coordination chemistry of Schiff bases, see: Habermehl et al. (2006 [triangle]). For a related structure, see: Li & Jian (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2686-scheme1.jpg

Experimental

Crystal data

  • C10H13N3S
  • M r = 207.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2686-efi1.jpg
  • a = 8.4899 (17) Å
  • b = 13.467 (3) Å
  • c = 10.015 (2) Å
  • β = 96.04 (3)°
  • V = 1138.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 293 K
  • 0.22 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 10048 measured reflections
  • 2596 independent reflections
  • 2118 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.152
  • S = 1.09
  • 2596 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038444/hb5654sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038444/hb5654Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases are important intermediates which have been reported to be chiral coordination compound with many interesting properties (Habermehl et al., 2006). As part of our research for new Schiff-base compounds we synthesized the title compound (I), and describe its structure here. In the molecule structure, the dihedral angle between the benzene ring and the thiourea unit is 8.96 (7)°.

Bond lengths and angles agree with those observed in a related structure (Li & Jian, 2010).

Experimental

A mixture of 4-ethylthiosemicarbazide (0.1 mol) and benzaldehyde (0.1 mol) was stirred in refluxing ethanol (25 mL) for 2 h to afford the title compound (0.079 mol, yield 79%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids.

Crystal data

C10H13N3SF(000) = 440
Mr = 207.30Dx = 1.209 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2596 reflections
a = 8.4899 (17) Åθ = 3.0–27.5°
b = 13.467 (3) ŵ = 0.25 mm1
c = 10.015 (2) ÅT = 293 K
β = 96.04 (3)°Block, colorless
V = 1138.7 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
graphiteθmax = 27.5°, θmin = 3.0°
phi and ω scansh = −10→9
10048 measured reflectionsk = −17→17
2596 independent reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0834P)2 + 0.1728P] where P = (Fo2 + 2Fc2)/3
2596 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.28967 (7)0.39580 (4)−0.07292 (4)0.0744 (2)
N10.25491 (17)0.29999 (11)0.15603 (14)0.0596 (4)
H1A0.29160.28620.23720.072*
N20.46620 (17)0.40411 (10)0.15771 (13)0.0537 (3)
H2A0.52790.44160.11710.064*
N30.50010 (15)0.38467 (9)0.29257 (13)0.0479 (3)
C40.61893 (18)0.43036 (12)0.35133 (16)0.0504 (4)
H4A0.67680.47240.30140.061*
C30.3357 (2)0.36416 (12)0.08914 (15)0.0516 (4)
C50.66728 (17)0.41886 (11)0.49435 (16)0.0473 (3)
C60.5847 (2)0.35906 (13)0.57650 (17)0.0566 (4)
H6A0.49660.32350.53990.068*
C100.7983 (2)0.47106 (14)0.55174 (19)0.0624 (4)
H10A0.85420.51170.49830.075*
C70.6330 (3)0.35251 (16)0.71139 (19)0.0721 (5)
H7A0.57730.31250.76580.087*
C90.8465 (2)0.46324 (17)0.6869 (2)0.0765 (6)
H9A0.93560.49770.72380.092*
C80.7637 (3)0.40488 (16)0.7670 (2)0.0775 (6)
H8A0.79530.40050.85860.093*
C1−0.0363 (3)0.3091 (2)0.1253 (3)0.1024 (9)
H1B−0.12900.27400.08760.154*
H1C−0.03240.37290.08320.154*
H1D−0.04050.31760.22000.154*
C20.1083 (3)0.25096 (16)0.1020 (2)0.0777 (6)
H2B0.10270.18620.14350.093*
H2C0.11020.24100.00630.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0973 (4)0.0820 (4)0.0422 (3)−0.0240 (3)−0.0006 (2)0.00516 (19)
N10.0682 (9)0.0602 (8)0.0491 (7)−0.0158 (7)0.0001 (6)0.0046 (6)
N20.0586 (8)0.0584 (8)0.0443 (7)−0.0070 (6)0.0066 (6)0.0044 (5)
N30.0514 (7)0.0472 (7)0.0451 (7)0.0009 (5)0.0046 (5)0.0014 (5)
C40.0470 (8)0.0513 (8)0.0534 (8)−0.0022 (6)0.0070 (6)0.0066 (7)
C30.0598 (9)0.0503 (8)0.0450 (8)−0.0013 (7)0.0070 (6)−0.0036 (6)
C50.0444 (7)0.0436 (7)0.0533 (8)0.0039 (6)0.0026 (6)0.0001 (6)
C60.0599 (9)0.0524 (8)0.0572 (9)−0.0016 (7)0.0049 (7)0.0063 (7)
C100.0529 (9)0.0616 (10)0.0714 (11)−0.0050 (8)0.0000 (8)−0.0015 (8)
C70.0932 (14)0.0654 (11)0.0584 (10)0.0106 (10)0.0110 (9)0.0107 (9)
C90.0693 (12)0.0740 (12)0.0806 (13)0.0041 (10)−0.0182 (10)−0.0179 (10)
C80.0976 (15)0.0781 (13)0.0528 (10)0.0246 (11)−0.0108 (10)−0.0087 (9)
C10.0765 (14)0.0977 (18)0.126 (2)−0.0322 (14)−0.0217 (14)0.0169 (15)
C20.0950 (15)0.0722 (12)0.0629 (11)−0.0365 (11)−0.0059 (10)0.0025 (9)

Geometric parameters (Å, °)

S1—C31.6838 (16)C10—C91.376 (3)
N1—C31.328 (2)C10—H10A0.9300
N1—C21.462 (2)C7—C81.382 (3)
N1—H1A0.8600C7—H7A0.9300
N2—C31.352 (2)C9—C81.370 (3)
N2—N31.3761 (18)C9—H9A0.9300
N2—H2A0.8600C8—H8A0.9300
N3—C41.272 (2)C1—C21.495 (4)
C4—C51.456 (2)C1—H1B0.9600
C4—H4A0.9300C1—H1C0.9600
C5—C101.389 (2)C1—H1D0.9600
C5—C61.392 (2)C2—H2B0.9700
C6—C71.373 (2)C2—H2C0.9700
C6—H6A0.9300
C3—N1—C2124.92 (15)C6—C7—C8120.6 (2)
C3—N1—H1A117.5C6—C7—H7A119.7
C2—N1—H1A117.5C8—C7—H7A119.7
C3—N2—N3119.89 (13)C8—C9—C10120.19 (19)
C3—N2—H2A120.1C8—C9—H9A119.9
N3—N2—H2A120.1C10—C9—H9A119.9
C4—N3—N2115.84 (13)C9—C8—C7119.75 (19)
N3—C4—C5122.10 (14)C9—C8—H8A120.1
N3—C4—H4A118.9C7—C8—H8A120.1
C5—C4—H4A118.9C2—C1—H1B109.5
N1—C3—N2116.22 (14)C2—C1—H1C109.5
N1—C3—S1124.84 (13)H1B—C1—H1C109.5
N2—C3—S1118.92 (13)C2—C1—H1D109.5
C10—C5—C6118.67 (15)H1B—C1—H1D109.5
C10—C5—C4118.95 (15)H1C—C1—H1D109.5
C6—C5—C4122.37 (14)N1—C2—C1112.78 (18)
C7—C6—C5120.11 (17)N1—C2—H2B109.0
C7—C6—H6A119.9C1—C2—H2B109.0
C5—C6—H6A119.9N1—C2—H2C109.0
C9—C10—C5120.71 (18)C1—C2—H2C109.0
C9—C10—H10A119.6H2B—C2—H2C107.8
C5—C10—H10A119.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.232.628 (2)108
N2—H2A···S1i0.862.743.5565 (16)158

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5654).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Habermehl, N. C., Angus, P. M. & Kilah, N. L. (2006). Inorg. Chem.45, 1445–1462. [PubMed]
  • Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography