PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2517.
Published online 2010 September 8. doi:  10.1107/S1600536810035245
PMCID: PMC2983405

Bis[2-((4,6-dimethyl­pyrimidin-2-yl){2-[(4,6-dimethyl­pyrimidin-2-yl)sulfan­yl]eth­yl}amino)­eth­yl] disulfide

Abstract

Bis[2-(4,6-dimethyl­pyrimidin-2-ylsulfan­yl)eth­yl]amine under hydro­thermal conditions has unexpectedly been transformed into the title compound, C32H44N10S4. In the title mol­ecule, the zigzag 3,10-diaza-6,7-disulfanyldodecyl skeleton has two dimethyl­pyrimidinylsulfanyl groups at both ends, and the aza atoms each carry a dimethyl­pyrimidinyl unit. The N atoms in the skeleton show a planar coordination.

Related literature

For the crystal structures of ligands having two 4,6-dimethyl­pyridimin-2-ylsulfanyl units linked to a hydro­carbon chain, see: Chen et al. (2007 [triangle]); Wang et al. (2007 [triangle]); Wu et al. (2007a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2517-scheme1.jpg

Experimental

Crystal data

  • C32H44N10S4
  • M r = 697.01
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2517-efi1.jpg
  • a = 11.7626 (5) Å
  • b = 12.7672 (6) Å
  • c = 13.7444 (7) Å
  • α = 106.382 (4)°
  • β = 103.276 (4)°
  • γ = 102.294 (4)°
  • V = 1840.15 (17) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 2.67 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire 3 diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.947, T max = 1.000
  • 11434 measured reflections
  • 7060 independent reflections
  • 5177 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.252
  • S = 1.07
  • 7060 reflections
  • 423 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 1.45 e Å−3
  • Δρmin = −0.75 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035245/xu5021sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035245/xu5021Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Special Foundation for Nano Technology of the Shanghai Committee for S&T (1052 nm00600), the Foundation of the S&T Program of Shanghai Maritime University (20100128), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

We are interested in synthesizing flexible ligands having two 4,6-dimethylpyridimin-2-ylsulfanyl units linked to a hydrocarbon chain; compounds such as 2,2'-bis(4,6-dimethylpyrimidn-2-ylsulfanyl)methane (Chen et al., 2007) and its ethane (Wu et al., 2007b), propane (Wu et al., 2007a) and butane (Wang et al., 2007) analogs have been synthesized for the purpose of studying its coordination chemistry in metal adducts. The coordination chemistry can be expanded in bis[2-(4,6-dimethylpyrimidin-2-ysulfanyl)ethyl]amine, whose synthesis has not been reported yet. However, the attempted complexation with copper ions under hydrothermal conditions yielded bis{2-[(4,6-dimethylpyrimidin-1-yl)(4,6-dimethylpyrimidin-1-ylsulfanyl-2-ethyl)amino]ethyl}disulfide (Scheme I, Fig. 1), a more interesting ligand whose exocyclic sulfur and endocyclic nitrogen sites offer many more sites for coordination.

Experimental

Bis[2-(4,6-dimethylpyrimidin-2-ylsulfanyl)ethyl]amine was synthesized from the reaction of bis(2-chloroethyl)ammonium hydrochloride (1.78 g, 0.01 mol) dissolved in ethanol (100 ml) and 4,6-dimethylpyrimidine-2-thiol (2.80 g, 0.02 mol)/sodium hydroxide (0.8 g, 0.02 mol) dissolved in ethanol (200 ml). The solution was heated at 353 K for 8 h. The solvent was removed and the residue was column chromatographed with ethly acetate/petroleum ether (1/1 v/v) as eluent to yield a white powder; yield 63%. The formulation was confirmed by 1H NMR (CDCl3, 400 MHz) spectroscopy: 1.36–1.402(m, 1H), 2.274 (d,6H), 2.403–2.426 (d,6H), 2.813–2.871(m, 2H), 3.343–3.380 (m, 2H), 6.279 (s, 1H), 6.715 (s, 1H). This compound has not been reported in the chemical literature yet.

The title compound was the unexpected product obtained in the reaction of bis(2-(4,6-dimethylpyrimidin-2-ylthio)ethyl)amine (0.175 g, 0.5 mmol), copper perchlorate (0.132 g, 0.5 mmol) and water (8 ml). The reactants were heated in a 23-ml Teflon-lined Parr reactor at 413 K for 3 days. The mixture was cooled to room temperature at a rate of 5 K h-1. The prismatic crystals were collected and washed with water; yield: 40%. MS (ESI) m/z(%): 698.2 (M+1). CH&N elemental analysis, calculated for C32H44N10S4: C 55.14, H 6.36, N 20.09%. Found: C 55.50, H 6.56, N 19.56%.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 times Ueq(C). The final difference Fourier map had a peak in the vicinity of N6.

For the ethyl portions, the carbon-carbon distance was restrained to 1.53±0.01 Å.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C32H44N10S4 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C32H44N10S4Z = 2
Mr = 697.01F(000) = 740
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 11.7626 (5) ÅCell parameters from 5344 reflections
b = 12.7672 (6) Åθ = 4.6–74.5°
c = 13.7444 (7) ŵ = 2.67 mm1
α = 106.382 (4)°T = 293 K
β = 103.276 (4)°Prism, colorless
γ = 102.294 (4)°0.30 × 0.25 × 0.20 mm
V = 1840.15 (17) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire 3 diffractometer7060 independent reflections
Radiation source: fine-focus sealed tube5177 reflections with I > 2σ(I)
graphiteRint = 0.020
Detector resolution: 16.0855 pixels mm-1θmax = 72.6°, θmin = 4.6°
ω scansh = −14→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)k = −15→15
Tmin = 0.947, Tmax = 1.000l = −16→16
11434 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.252H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.1399P)2 + 1.4306P] where P = (Fo2 + 2Fc2)/3
7060 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 1.45 e Å3
4 restraintsΔρmin = −0.75 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.74226 (10)0.71528 (10)0.39171 (9)0.0696 (3)
S20.57455 (12)0.67895 (10)0.41240 (10)0.0812 (4)
S30.96757 (10)0.65326 (9)0.03184 (10)0.0661 (3)
S40.36046 (14)0.95980 (10)0.78051 (12)0.0903 (5)
N10.6607 (3)0.6061 (3)0.1261 (3)0.0538 (7)
N20.5256 (3)0.4838 (3)0.1734 (3)0.0527 (7)
N30.6443 (3)0.4147 (3)0.0636 (2)0.0531 (7)
N40.9874 (3)0.8593 (3)0.1672 (3)0.0582 (8)
N51.0838 (3)0.8487 (3)0.0304 (3)0.0598 (8)
N60.6477 (4)0.9727 (4)0.6648 (4)0.0905 (14)
N70.7688 (3)1.0764 (3)0.5901 (3)0.0745 (11)
N80.6908 (4)1.1703 (3)0.7257 (3)0.0685 (10)
N90.3262 (4)0.7490 (3)0.6468 (3)0.0712 (10)
N100.1976 (4)0.7779 (3)0.7571 (3)0.0731 (10)
C10.7241 (4)0.7789 (3)0.2897 (3)0.0645 (11)
H1A0.70280.84860.31620.077*
H1B0.80210.80000.27700.077*
C20.6275 (4)0.7027 (3)0.1837 (3)0.0590 (9)
H2A0.55140.67460.19720.071*
H2B0.61320.74850.13920.071*
C30.6078 (3)0.4974 (3)0.1210 (3)0.0484 (8)
C40.4770 (3)0.3770 (3)0.1680 (3)0.0554 (9)
C50.3843 (5)0.3613 (4)0.2253 (4)0.0772 (13)
H5A0.41170.42180.29320.116*
H5B0.37430.28910.23580.116*
H5C0.30750.36280.18370.116*
C60.5088 (4)0.2862 (3)0.1110 (3)0.0588 (9)
H60.47390.21220.10750.071*
C70.5939 (3)0.3083 (3)0.0593 (3)0.0537 (9)
C80.6332 (5)0.2155 (4)−0.0056 (4)0.0706 (11)
H8A0.72000.23080.02270.106*
H8B0.61300.2129−0.07820.106*
H8C0.59180.1434−0.00310.106*
C90.7418 (3)0.6247 (3)0.0630 (3)0.0537 (9)
H9A0.74890.69960.05710.064*
H9B0.70490.5684−0.00840.064*
C100.8697 (3)0.6174 (4)0.1083 (3)0.0591 (9)
H10A0.86430.54040.10810.071*
H10B0.90510.66930.18160.071*
C111.0171 (3)0.8040 (3)0.0842 (3)0.0551 (9)
C121.0309 (4)0.9735 (4)0.2019 (4)0.0638 (10)
C130.9967 (5)1.0376 (4)0.2947 (5)0.0839 (14)
H13A1.01561.00760.35110.126*
H13B0.91061.02910.27290.126*
H13C1.04181.11720.31960.126*
C141.1014 (4)1.0279 (4)0.1525 (4)0.0691 (11)
H141.13081.10730.17680.083*
C151.1274 (4)0.9623 (4)0.0662 (4)0.0611 (10)
C161.2025 (4)1.0147 (4)0.0081 (4)0.0761 (13)
H16A1.17980.9639−0.06430.114*
H16B1.28761.02770.04250.114*
H16C1.18831.08620.00880.114*
C170.5658 (5)0.8234 (6)0.4963 (4)0.112 (2)
H17A0.57900.87830.46040.134*
H17B0.48570.81490.50610.134*
C180.6604 (5)0.8636 (5)0.5998 (4)0.0878 (15)
H18A0.74090.87590.59060.105*
H18B0.64950.80760.63470.105*
C190.7040 (5)1.0778 (4)0.6585 (4)0.0789 (14)
C200.8330 (4)1.1790 (4)0.5960 (3)0.0659 (11)
C210.9099 (5)1.1770 (6)0.5229 (5)0.0984 (18)
H21A0.85791.14870.45030.148*
H21B0.96001.12800.53200.148*
H21C0.96131.25300.53930.148*
C220.8282 (4)1.2782 (4)0.6648 (4)0.0668 (11)
H220.87421.34900.66850.080*
C230.7540 (4)1.2708 (3)0.7285 (3)0.0590 (9)
C240.7415 (5)1.3748 (4)0.8051 (4)0.0796 (14)
H24A0.65941.37860.78270.119*
H24B0.79771.44220.80620.119*
H24C0.75951.37010.87520.119*
C250.5709 (5)0.9658 (4)0.7391 (4)0.0811 (14)
H25A0.55340.89040.74490.097*
H25B0.61471.02190.80970.097*
C260.4571 (4)0.9884 (4)0.6943 (5)0.0888 (16)
H26A0.41720.93810.62080.107*
H26B0.47271.06710.69710.107*
C270.2882 (4)0.8113 (4)0.7202 (4)0.0642 (10)
C280.2640 (5)0.6370 (4)0.6049 (4)0.0784 (13)
C290.3050 (7)0.5657 (5)0.5205 (5)0.106 (2)
H29A0.32610.60810.47620.159*
H29B0.23990.49680.47760.159*
H29C0.37510.54680.55360.159*
C300.1711 (6)0.5938 (4)0.6403 (5)0.0937 (17)
H300.13000.51590.61270.112*
C310.1387 (5)0.6670 (5)0.7175 (5)0.0860 (15)
C320.0362 (7)0.6270 (6)0.7581 (7)0.132 (3)
H32A0.05880.66710.83350.198*
H32B0.01970.54640.74450.198*
H32C−0.03570.64190.72250.198*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0649 (6)0.0682 (7)0.0666 (7)0.0186 (5)0.0204 (5)0.0108 (5)
S20.0860 (8)0.0554 (6)0.0813 (8)−0.0002 (5)0.0436 (7)−0.0057 (5)
S30.0617 (6)0.0514 (5)0.0835 (7)0.0110 (4)0.0360 (5)0.0143 (5)
S40.0995 (9)0.0567 (6)0.1033 (10)−0.0047 (6)0.0636 (8)0.0056 (6)
N10.0538 (17)0.0440 (16)0.0608 (18)0.0087 (13)0.0228 (15)0.0141 (14)
N20.0541 (17)0.0459 (16)0.0562 (18)0.0106 (13)0.0209 (14)0.0152 (13)
N30.0549 (17)0.0450 (16)0.0532 (17)0.0090 (13)0.0192 (14)0.0104 (13)
N40.0518 (17)0.0540 (18)0.068 (2)0.0145 (14)0.0229 (15)0.0174 (15)
N50.0507 (17)0.0581 (19)0.070 (2)0.0102 (15)0.0252 (16)0.0213 (16)
N60.100 (3)0.061 (2)0.101 (3)0.008 (2)0.057 (3)0.005 (2)
N70.066 (2)0.075 (2)0.067 (2)0.0054 (18)0.0332 (18)0.0032 (18)
N80.079 (2)0.0455 (17)0.073 (2)0.0055 (16)0.0401 (19)0.0054 (16)
N90.074 (2)0.054 (2)0.077 (2)0.0105 (17)0.0210 (19)0.0160 (18)
N100.072 (2)0.064 (2)0.078 (2)0.0025 (18)0.0258 (19)0.0287 (19)
C10.067 (2)0.0390 (19)0.082 (3)0.0097 (17)0.031 (2)0.0108 (18)
C20.061 (2)0.049 (2)0.071 (2)0.0184 (17)0.0242 (19)0.0219 (18)
C30.0443 (17)0.0452 (18)0.0489 (19)0.0073 (14)0.0111 (14)0.0135 (15)
C40.051 (2)0.055 (2)0.056 (2)0.0070 (16)0.0172 (17)0.0192 (17)
C50.080 (3)0.067 (3)0.096 (3)0.015 (2)0.048 (3)0.033 (3)
C60.063 (2)0.0431 (19)0.066 (2)0.0081 (17)0.0184 (19)0.0184 (17)
C70.054 (2)0.0458 (19)0.051 (2)0.0107 (16)0.0103 (16)0.0107 (15)
C80.081 (3)0.050 (2)0.073 (3)0.018 (2)0.026 (2)0.010 (2)
C90.054 (2)0.051 (2)0.057 (2)0.0110 (16)0.0187 (17)0.0218 (17)
C100.056 (2)0.055 (2)0.068 (2)0.0122 (17)0.0220 (19)0.0270 (19)
C110.0441 (18)0.054 (2)0.065 (2)0.0122 (16)0.0185 (17)0.0168 (18)
C120.054 (2)0.056 (2)0.072 (3)0.0145 (18)0.0188 (19)0.012 (2)
C130.083 (3)0.068 (3)0.095 (4)0.020 (2)0.041 (3)0.011 (3)
C140.061 (2)0.047 (2)0.087 (3)0.0054 (18)0.020 (2)0.016 (2)
C150.048 (2)0.062 (2)0.073 (3)0.0114 (17)0.0171 (18)0.027 (2)
C160.064 (3)0.078 (3)0.089 (3)0.007 (2)0.028 (2)0.040 (3)
C170.074 (3)0.142 (6)0.083 (4)0.004 (3)0.042 (3)−0.008 (4)
C180.099 (4)0.084 (3)0.088 (4)0.034 (3)0.035 (3)0.031 (3)
C190.082 (3)0.056 (2)0.085 (3)0.000 (2)0.047 (3)0.002 (2)
C200.046 (2)0.090 (3)0.061 (2)0.012 (2)0.0162 (18)0.032 (2)
C210.078 (3)0.140 (5)0.105 (4)0.038 (3)0.053 (3)0.059 (4)
C220.054 (2)0.064 (3)0.078 (3)0.0054 (19)0.015 (2)0.031 (2)
C230.055 (2)0.050 (2)0.061 (2)0.0077 (17)0.0109 (18)0.0150 (17)
C240.075 (3)0.044 (2)0.100 (4)0.008 (2)0.020 (3)0.009 (2)
C250.122 (4)0.055 (2)0.060 (3)0.028 (3)0.016 (3)0.018 (2)
C260.071 (3)0.058 (3)0.124 (5)0.009 (2)0.011 (3)0.036 (3)
C270.064 (2)0.054 (2)0.069 (3)0.0066 (19)0.021 (2)0.022 (2)
C280.082 (3)0.053 (2)0.088 (3)0.014 (2)0.013 (3)0.022 (2)
C290.125 (5)0.063 (3)0.107 (4)0.026 (3)0.023 (4)0.008 (3)
C300.104 (4)0.050 (3)0.104 (4)−0.004 (3)0.019 (3)0.024 (3)
C310.088 (3)0.065 (3)0.091 (4)−0.005 (3)0.022 (3)0.032 (3)
C320.127 (6)0.103 (5)0.149 (6)−0.024 (4)0.059 (5)0.048 (5)

Geometric parameters (Å, °)

S1—C11.802 (5)C9—H9B0.9700
S1—S22.0323 (17)C10—H10A0.9700
S2—C171.918 (7)C10—H10B0.9700
S3—C111.764 (4)C12—C141.382 (6)
S3—C101.801 (4)C12—C131.499 (6)
S4—C271.763 (4)C13—H13A0.9600
S4—C261.874 (6)C13—H13B0.9600
N1—C31.369 (5)C13—H13C0.9600
N1—C21.449 (5)C14—C151.385 (6)
N1—C91.456 (5)C14—H140.9300
N2—C41.335 (5)C15—C161.497 (6)
N2—C31.343 (5)C16—H16A0.9600
N3—C71.339 (5)C16—H16B0.9600
N3—C31.342 (5)C16—H16C0.9600
N4—C111.324 (5)C17—C181.464 (6)
N4—C121.339 (5)C17—H17A0.9700
N5—C151.331 (5)C17—H17B0.9700
N5—C111.343 (5)C18—H18A0.9700
N6—C191.399 (6)C18—H18B0.9700
N6—C181.486 (7)C20—C221.371 (6)
N6—C251.520 (7)C20—C211.497 (6)
N7—C201.336 (6)C21—H21A0.9600
N7—C191.338 (6)C21—H21B0.9600
N8—C231.325 (5)C21—H21C0.9600
N8—C191.342 (5)C22—C231.378 (6)
N9—C271.324 (6)C22—H220.9300
N9—C281.345 (6)C23—C241.503 (6)
N10—C271.324 (6)C24—H24A0.9600
N10—C311.325 (6)C24—H24B0.9600
C1—C21.526 (5)C24—H24C0.9600
C1—H1A0.9700C25—C261.464 (6)
C1—H1B0.9700C25—H25A0.9700
C2—H2A0.9700C25—H25B0.9700
C2—H2B0.9700C26—H26A0.9700
C4—C61.380 (6)C26—H26B0.9700
C4—C51.498 (6)C28—C301.369 (8)
C5—H5A0.9600C28—C291.501 (8)
C5—H5B0.9600C29—H29A0.9600
C5—H5C0.9600C29—H29B0.9600
C6—C71.380 (6)C29—H29C0.9600
C6—H60.9300C30—C311.387 (8)
C7—C81.497 (5)C30—H300.9300
C8—H8A0.9600C31—C321.495 (8)
C8—H8B0.9600C32—H32A0.9600
C8—H8C0.9600C32—H32B0.9600
C9—C101.524 (5)C32—H32C0.9600
C9—H9A0.9700
C1—S1—S2104.28 (16)N5—C15—C14120.6 (4)
C17—S2—S1104.44 (18)N5—C15—C16117.3 (4)
C11—S3—C10102.6 (2)C14—C15—C16122.1 (4)
C27—S4—C26102.5 (2)C15—C16—H16A109.5
C3—N1—C2121.5 (3)C15—C16—H16B109.5
C3—N1—C9119.8 (3)H16A—C16—H16B109.5
C2—N1—C9118.3 (3)C15—C16—H16C109.5
C4—N2—C3116.0 (3)H16A—C16—H16C109.5
C7—N3—C3116.3 (3)H16B—C16—H16C109.5
C11—N4—C12115.6 (4)C18—C17—S2108.2 (5)
C15—N5—C11116.0 (4)C18—C17—H17A110.0
C19—N6—C18121.8 (4)S2—C17—H17A110.0
C19—N6—C25121.0 (4)C18—C17—H17B110.0
C18—N6—C25117.2 (4)S2—C17—H17B110.0
C20—N7—C19115.3 (4)H17A—C17—H17B108.4
C23—N8—C19116.3 (4)C17—C18—N6107.1 (5)
C27—N9—C28115.1 (4)C17—C18—H18A110.3
C27—N10—C31115.9 (5)N6—C18—H18A110.3
C2—C1—S1114.9 (3)C17—C18—H18B110.3
C2—C1—H1A108.5N6—C18—H18B110.3
S1—C1—H1A108.5H18A—C18—H18B108.6
C2—C1—H1B108.5N7—C19—N8126.8 (4)
S1—C1—H1B108.5N7—C19—N6117.4 (4)
H1A—C1—H1B107.5N8—C19—N6115.7 (4)
N1—C2—C1113.8 (3)N7—C20—C22121.7 (4)
N1—C2—H2A108.8N7—C20—C21115.1 (5)
C1—C2—H2A108.8C22—C20—C21123.2 (5)
N1—C2—H2B108.8C20—C21—H21A109.5
C1—C2—H2B108.8C20—C21—H21B109.5
H2A—C2—H2B107.7H21A—C21—H21B109.5
N3—C3—N2126.5 (3)C20—C21—H21C109.5
N3—C3—N1116.0 (3)H21A—C21—H21C109.5
N2—C3—N1117.5 (3)H21B—C21—H21C109.5
N2—C4—C6121.8 (4)C20—C22—C23118.6 (4)
N2—C4—C5116.2 (4)C20—C22—H22120.7
C6—C4—C5122.0 (4)C23—C22—H22120.7
C4—C5—H5A109.5N8—C23—C22121.0 (4)
C4—C5—H5B109.5N8—C23—C24116.6 (4)
H5A—C5—H5B109.5C22—C23—C24122.4 (4)
C4—C5—H5C109.5C23—C24—H24A109.5
H5A—C5—H5C109.5C23—C24—H24B109.5
H5B—C5—H5C109.5H24A—C24—H24B109.5
C4—C6—C7118.2 (4)C23—C24—H24C109.5
C4—C6—H6120.9H24A—C24—H24C109.5
C7—C6—H6120.9H24B—C24—H24C109.5
N3—C7—C6121.3 (3)C26—C25—N6107.6 (4)
N3—C7—C8116.5 (4)C26—C25—H25A110.2
C6—C7—C8122.2 (4)N6—C25—H25A110.2
C7—C8—H8A109.5C26—C25—H25B110.2
C7—C8—H8B109.5N6—C25—H25B110.2
H8A—C8—H8B109.5H25A—C25—H25B108.5
C7—C8—H8C109.5C25—C26—S4104.7 (4)
H8A—C8—H8C109.5C25—C26—H26A110.8
H8B—C8—H8C109.5S4—C26—H26A110.8
N1—C9—C10114.3 (3)C25—C26—H26B110.8
N1—C9—H9A108.7S4—C26—H26B110.8
C10—C9—H9A108.7H26A—C26—H26B108.9
N1—C9—H9B108.7N10—C27—N9128.7 (4)
C10—C9—H9B108.7N10—C27—S4111.4 (3)
H9A—C9—H9B107.6N9—C27—S4119.9 (3)
C9—C10—S3111.4 (3)N9—C28—C30120.5 (5)
C9—C10—H10A109.4N9—C28—C29115.7 (5)
S3—C10—H10A109.4C30—C28—C29123.8 (5)
C9—C10—H10B109.4C28—C29—H29A109.5
S3—C10—H10B109.4C28—C29—H29B109.5
H10A—C10—H10B108.0H29A—C29—H29B109.5
N4—C11—N5127.8 (4)C28—C29—H29C109.5
N4—C11—S3120.2 (3)H29A—C29—H29C109.5
N5—C11—S3111.9 (3)H29B—C29—H29C109.5
N4—C12—C14121.1 (4)C28—C30—C31119.5 (5)
N4—C12—C13116.3 (4)C28—C30—H30120.2
C14—C12—C13122.6 (4)C31—C30—H30120.2
C12—C13—H13A109.5N10—C31—C30120.3 (5)
C12—C13—H13B109.5N10—C31—C32117.0 (6)
H13A—C13—H13B109.5C30—C31—C32122.8 (5)
C12—C13—H13C109.5C31—C32—H32A109.5
H13A—C13—H13C109.5C31—C32—H32B109.5
H13B—C13—H13C109.5H32A—C32—H32B109.5
C12—C14—C15118.9 (4)C31—C32—H32C109.5
C12—C14—H14120.6H32A—C32—H32C109.5
C15—C14—H14120.6H32B—C32—H32C109.5
C1—S1—S2—C17−77.4 (3)S1—S2—C17—C18−63.6 (5)
S2—S1—C1—C2−59.5 (3)S2—C17—C18—N6−177.4 (4)
C3—N1—C2—C1105.5 (4)C19—N6—C18—C17−85.7 (7)
C9—N1—C2—C1−81.3 (4)C25—N6—C18—C1794.5 (6)
S1—C1—C2—N1−69.4 (4)C20—N7—C19—N85.0 (8)
C7—N3—C3—N2−0.5 (6)C20—N7—C19—N6−172.1 (5)
C7—N3—C3—N1179.3 (3)C23—N8—C19—N7−4.0 (8)
C4—N2—C3—N30.7 (6)C23—N8—C19—N6173.2 (5)
C4—N2—C3—N1−179.1 (3)C18—N6—C19—N71.0 (8)
C2—N1—C3—N3178.8 (3)C25—N6—C19—N7−179.2 (5)
C9—N1—C3—N35.8 (5)C18—N6—C19—N8−176.5 (5)
C2—N1—C3—N2−1.3 (5)C25—N6—C19—N83.4 (8)
C9—N1—C3—N2−174.3 (3)C19—N7—C20—C22−2.4 (7)
C3—N2—C4—C6−0.6 (6)C19—N7—C20—C21177.2 (5)
C3—N2—C4—C5−179.4 (4)N7—C20—C22—C23−0.7 (7)
N2—C4—C6—C70.4 (6)C21—C20—C22—C23179.7 (4)
C5—C4—C6—C7179.1 (4)C19—N8—C23—C220.4 (7)
C3—N3—C7—C60.3 (5)C19—N8—C23—C24−178.9 (4)
C3—N3—C7—C8179.3 (3)C20—C22—C23—N81.8 (7)
C4—C6—C7—N3−0.2 (6)C20—C22—C23—C24−179.1 (4)
C4—C6—C7—C8−179.2 (4)C19—N6—C25—C2671.8 (6)
C3—N1—C9—C10−77.2 (4)C18—N6—C25—C26−108.3 (5)
C2—N1—C9—C10109.6 (4)N6—C25—C26—S4173.0 (3)
N1—C9—C10—S3−175.1 (3)C27—S4—C26—C25−86.1 (4)
C11—S3—C10—C982.3 (3)C31—N10—C27—N91.8 (8)
C12—N4—C11—N5−0.9 (6)C31—N10—C27—S4−179.1 (4)
C12—N4—C11—S3179.1 (3)C28—N9—C27—N10−0.2 (7)
C15—N5—C11—N41.5 (6)C28—N9—C27—S4−179.3 (4)
C15—N5—C11—S3−178.5 (3)C26—S4—C27—N10−167.7 (3)
C10—S3—C11—N45.5 (4)C26—S4—C27—N911.5 (4)
C10—S3—C11—N5−174.5 (3)C27—N9—C28—C30−1.7 (7)
C11—N4—C12—C140.4 (6)C27—N9—C28—C29179.1 (5)
C11—N4—C12—C13179.1 (4)N9—C28—C30—C312.0 (9)
N4—C12—C14—C15−0.4 (7)C29—C28—C30—C31−178.9 (5)
C13—C12—C14—C15−179.1 (4)C27—N10—C31—C30−1.4 (8)
C11—N5—C15—C14−1.4 (6)C27—N10—C31—C32179.8 (6)
C11—N5—C15—C16179.8 (4)C28—C30—C31—N10−0.3 (9)
C12—C14—C15—N51.0 (7)C28—C30—C31—C32178.4 (6)
C12—C14—C15—C16179.7 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5021).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Chen, S.-K., Li, L., Tian, L. & Wu, J.-Y. (2007). Acta Cryst. E63, o1126–o1127.
  • Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, M., Cheng, L.-H. & Wang, A.-M. (2007). Acta Cryst. E63, o3296.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Wu, G.-H., Liu, T.-B., Peng, Y.-F. & Wu, G.-Z. (2007a). Acta Cryst. E63, o4349.
  • Wu, G.-H., Wu, X.-M., Zhang, J.-P. & Liu, T.-B. (2007b). Acta Cryst. E63, o3776.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography