PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2524.
Published online 2010 September 11. doi:  10.1107/S1600536810035725
PMCID: PMC2983404

N,N′-Dibenzyl-N′′-(2,6-difluoro­benzo­yl)-N,N′-dimethyl­phospho­ric triamide

Abstract

The phosphoryl and carbonyl groups in the title compound, C23H24F2N3O2P, are anti to each other. The P atom is in a tetra­hedral coordination environment and the environment of each N atom is essentially planar, the average bond angles at the two N atoms being 119.9 and 119.1°. The H atom of the C(=O)NHP(=O) group is involved in an inter­molecular –P=O(...)H–N– hydrogen bond, forming centrosymmetric dimers.

Related literature

For related structures, see: Pourayoubi & Sabbaghi (2009 [triangle]); Sabbaghi et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2524-scheme1.jpg

Experimental

Crystal data

  • C23H24F2N3O2P
  • M r = 443.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2524-efi1.jpg
  • a = 9.9370 (11) Å
  • b = 11.1093 (15) Å
  • c = 11.5902 (14) Å
  • α = 89.101 (4)°
  • β = 67.826 (4)°
  • γ = 71.664 (4)°
  • V = 1116.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 200 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART X2S benchtop CCD area-detector diffractometer
  • Absorption correction: multi-scan SADABS (Bruker, 2005 [triangle]) T min = 0.952, T max = 0.968
  • 13602 measured reflections
  • 5173 independent reflections
  • 3851 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.126
  • S = 1.03
  • 5173 reflections
  • 286 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035725/ng5027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035725/ng5027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged. The authors wish to thank Bruker AXS, Inc. for the use of one of their SMART X2S benchtop instruments.

supplementary crystallographic information

Comment

Following the previous works about carbacylamidophosphates with a C(═O)NHP(═O) skeleton such as P(O)[NHC(O)C6H4(4-NO2)][N(CH(CH3)2)(CH2C6H5)]2 (Pourayoubi & Sabbaghi, 2009) and P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2 (Sabbaghi et al., 2010), here, we report the synthesis and crystal structure of title compound, P(O)[NHC(O)C6H3(2,6-F2)][N(CH3)(CH2C6H5)]2. The phosphoryl and carbonyl groups are anti to each other and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig. 1). The bond angles around the P atom are in the range of 107.11 (8)°-114.81 (8)°. The P1–N2 and P1–N3 bond lengths (1.6405 (14) Å and 1.6266 (16) Å) are shorter than the P1–N1 bond (1.6886 (15) Å). The environment of the nitrogen atoms is essentially planar; the angles C23–N3–P1, C16–N3–C23 and C16–N3–P1 are 117.53 (14)°, 116.19 (17)° and 126.13 (14)°, respectively (with average = 119.9°). A similar result was obtained for the bond angles around N2 atom (average = 119.1°). Furthermore, the angle C7–N1–P1 is 126.79 (13)°. The P═O bond length of 1.4796 (13) Å is standard for phosphoramidate compounds. The hydrogen atom of the C(═O)NHP(═O) group is involved in an intermolecular –P═O···H–N– hydrogen bond (see Table 1) to form a centrosymmetric dimeric aggregate.

Experimental

The reaction of phosphorus pentachloride (3.478 g, 16.7 mmol) and 2,6-difluorobenzamide (2.624 g, 16.7 mmol) in dry CCl4 at 358 K (3 h) and then the treatment of formic acid (0.769 g, 16.7 mmol) at ice bath temperature leads to 2,6-F2—C6H3C(O)NHP(O)Cl2. To a solution of 2,6-F2—C6H3C(O)NHP(O)Cl2 (0.411 g, 1.5 mmol) in dry CHCl3, a solution of N-methylbenzylamine (0.727 g, 6 mmol) in dry CHCl3 was added dropwise at 273 K. After 4 h stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH3OH and n-C7H14 (5:1) after slow evaporation at room temperature. IR (KBr, cm-1): 3446, 3042, 2867, 1690, 1607, 1465, 1369, 1210, 1150, 1019, 865, 823, 763, 725.

Refinement

APEX2 software was used for preliminary determination of the unit cell. Determination of integral intensities and unit cell refinement were performed using SAINT and data were corrected for absorption using SADABS. Structure was solved by direct methods and all non-hydrogen atoms were refined as anisotropic by Fourier full matrix least squares. Hydrogen H1A was found from a Fourier difference map and was allowed to refine and all other hydrogen atoms were placed in calculated positions with appropriate riding factors.

Figures

Fig. 1.
An ORTEP-style plot of title compound. Ellipsoids are given at the 50% probability level.

Crystal data

C23H24F2N3O2PZ = 2
Mr = 443.42F(000) = 464
Triclinic, P1Dx = 1.318 Mg m3
a = 9.9370 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1093 (15) ÅCell parameters from 5531 reflections
c = 11.5902 (14) Åθ = 2.4–27.8°
α = 89.101 (4)°µ = 0.16 mm1
β = 67.826 (4)°T = 200 K
γ = 71.664 (4)°BLOCK, colorless
V = 1116.9 (2) Å30.30 × 0.25 × 0.20 mm

Data collection

Bruker SMART X2S benchtop CCD area-detector diffractometer5173 independent reflections
Radiation source: fine-focus sealed tube3851 reflections with I > 2σ(I)
curved silicon crystalRint = 0.036
phi and ω scansθmax = 27.8°, θmin = 2.4°
Absorption correction: multi-scan SADABS (Bruker, 2005)h = −13→13
Tmin = 0.952, Tmax = 0.968k = −14→14
13602 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0603P)2 + 0.2218P] where P = (Fo2 + 2Fc2)/3
5173 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.66485 (5)0.42270 (4)0.29906 (4)0.02461 (13)
F10.41237 (17)0.18210 (16)0.50507 (15)0.0723 (5)
F20.16095 (14)0.43844 (12)0.27352 (13)0.0532 (4)
O10.50833 (16)0.27969 (15)0.19272 (13)0.0445 (4)
O20.68882 (13)0.46617 (12)0.40757 (12)0.0323 (3)
N10.48905 (16)0.40601 (15)0.35526 (15)0.0277 (3)
N20.79630 (15)0.28474 (13)0.22927 (13)0.0246 (3)
N30.66719 (17)0.52094 (15)0.19333 (15)0.0358 (4)
C10.2810 (2)0.2390 (2)0.4858 (2)0.0449 (5)
C20.1464 (3)0.2189 (3)0.5632 (2)0.0583 (7)
H2A0.14430.16780.62990.070*
C30.0152 (3)0.2755 (3)0.5402 (2)0.0573 (7)
H3A−0.07850.26340.59240.069*
C40.0174 (2)0.3490 (2)0.4434 (2)0.0485 (6)
H4A−0.07330.38800.42820.058*
C50.1560 (2)0.3646 (2)0.36861 (19)0.0370 (5)
C60.2916 (2)0.31110 (18)0.38644 (17)0.0315 (4)
C70.4403 (2)0.32953 (18)0.30107 (17)0.0309 (4)
C80.86123 (19)0.24379 (17)0.09447 (16)0.0280 (4)
H8A0.82680.31730.05090.034*
H8B0.82120.17710.07920.034*
C91.03733 (19)0.19106 (16)0.03916 (16)0.0250 (4)
C101.1236 (2)0.22336 (17)0.09620 (17)0.0296 (4)
H10A1.07270.27970.17200.035*
C111.2842 (2)0.17395 (19)0.04339 (18)0.0341 (4)
H11A1.34190.19640.08360.041*
C121.3599 (2)0.09219 (18)−0.06744 (19)0.0358 (5)
H12A1.46930.0584−0.10330.043*
C131.2756 (2)0.06030 (19)−0.12524 (19)0.0393 (5)
H13A1.32700.0049−0.20170.047*
C141.1147 (2)0.10908 (18)−0.07202 (18)0.0336 (4)
H14A1.05750.0859−0.11230.040*
C150.8149 (2)0.18153 (18)0.30902 (18)0.0351 (4)
H15A0.92290.12610.27670.053*
H15B0.74970.13130.30840.053*
H15C0.78420.21840.39510.053*
C160.5493 (2)0.56887 (19)0.14191 (18)0.0382 (5)
H16A0.49170.50830.15350.046*
H16B0.60100.57050.05060.046*
C170.4345 (2)0.70157 (17)0.20021 (17)0.0290 (4)
C180.3442 (2)0.76890 (19)0.13718 (19)0.0360 (5)
H18A0.35380.73080.06040.043*
C190.2409 (2)0.8908 (2)0.1858 (2)0.0402 (5)
H19A0.17960.93550.14260.048*
C200.2266 (2)0.9478 (2)0.2971 (2)0.0414 (5)
H20A0.15681.03190.32970.050*
C210.3144 (2)0.88166 (19)0.36020 (18)0.0399 (5)
H21A0.30470.92020.43680.048*
C220.4176 (2)0.75831 (18)0.31215 (18)0.0344 (4)
H22A0.47670.71300.35690.041*
C230.7939 (3)0.5743 (2)0.1510 (3)0.0603 (7)
H23A0.84980.55370.05990.091*
H23B0.86460.53760.19250.091*
H23C0.75160.66730.17240.091*
H1A0.429 (2)0.442 (2)0.427 (2)0.038 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0173 (2)0.0247 (2)0.0261 (2)−0.00350 (17)−0.00496 (17)−0.00334 (17)
F10.0611 (9)0.0976 (12)0.0788 (11)−0.0319 (9)−0.0460 (8)0.0389 (9)
F20.0449 (7)0.0539 (8)0.0632 (9)−0.0087 (6)−0.0301 (7)0.0035 (7)
O10.0354 (8)0.0614 (10)0.0329 (8)−0.0183 (7)−0.0068 (6)−0.0151 (7)
O20.0208 (6)0.0398 (7)0.0315 (7)−0.0084 (5)−0.0061 (5)−0.0112 (6)
N10.0182 (7)0.0342 (8)0.0262 (8)−0.0076 (6)−0.0044 (6)−0.0074 (7)
N20.0206 (7)0.0242 (7)0.0231 (7)−0.0022 (6)−0.0064 (6)0.0009 (6)
N30.0259 (8)0.0294 (8)0.0446 (10)−0.0035 (7)−0.0107 (7)0.0096 (7)
C10.0398 (12)0.0603 (14)0.0426 (12)−0.0222 (11)−0.0200 (10)0.0059 (11)
C20.0607 (16)0.0738 (18)0.0467 (14)−0.0402 (14)−0.0133 (12)0.0104 (13)
C30.0415 (13)0.0695 (17)0.0565 (15)−0.0329 (13)−0.0022 (11)−0.0100 (13)
C40.0249 (10)0.0540 (14)0.0626 (15)−0.0107 (10)−0.0140 (10)−0.0199 (12)
C50.0305 (10)0.0391 (11)0.0407 (11)−0.0086 (8)−0.0152 (9)−0.0073 (9)
C60.0242 (9)0.0382 (10)0.0320 (10)−0.0110 (8)−0.0100 (8)−0.0080 (8)
C70.0229 (9)0.0361 (10)0.0314 (10)−0.0061 (8)−0.0110 (8)−0.0053 (8)
C80.0242 (9)0.0297 (9)0.0241 (9)−0.0045 (7)−0.0065 (7)−0.0026 (7)
C90.0220 (8)0.0247 (9)0.0249 (9)−0.0068 (7)−0.0062 (7)0.0030 (7)
C100.0291 (9)0.0305 (9)0.0268 (9)−0.0079 (8)−0.0100 (8)0.0001 (7)
C110.0277 (10)0.0394 (11)0.0377 (11)−0.0139 (8)−0.0135 (8)0.0078 (9)
C120.0202 (9)0.0349 (10)0.0431 (11)−0.0073 (8)−0.0042 (8)0.0062 (9)
C130.0289 (10)0.0364 (11)0.0366 (11)−0.0061 (8)0.0008 (8)−0.0093 (9)
C140.0275 (9)0.0347 (10)0.0341 (10)−0.0113 (8)−0.0063 (8)−0.0046 (8)
C150.0328 (10)0.0314 (10)0.0344 (10)−0.0050 (8)−0.0106 (8)0.0058 (8)
C160.0437 (11)0.0322 (10)0.0317 (10)−0.0024 (9)−0.0158 (9)0.0019 (8)
C170.0267 (9)0.0288 (9)0.0299 (9)−0.0078 (7)−0.0107 (8)0.0061 (8)
C180.0359 (10)0.0403 (11)0.0377 (11)−0.0136 (9)−0.0202 (9)0.0070 (9)
C190.0299 (10)0.0413 (12)0.0511 (13)−0.0066 (9)−0.0222 (9)0.0147 (10)
C200.0324 (10)0.0326 (11)0.0463 (12)−0.0009 (8)−0.0100 (9)0.0057 (9)
C210.0426 (12)0.0362 (11)0.0322 (11)−0.0068 (9)−0.0103 (9)0.0014 (9)
C220.0364 (10)0.0304 (10)0.0323 (10)−0.0030 (8)−0.0158 (8)0.0060 (8)
C230.0362 (12)0.0495 (14)0.0853 (19)−0.0157 (11)−0.0129 (12)0.0317 (13)

Geometric parameters (Å, °)

P1—O21.4796 (13)C10—H10A0.9500
P1—N31.6266 (16)C11—C121.385 (3)
P1—N21.6405 (14)C11—H11A0.9500
P1—N11.6886 (15)C12—C131.377 (3)
F1—C11.360 (2)C12—H12A0.9500
F2—C51.359 (2)C13—C141.397 (3)
O1—C71.219 (2)C13—H13A0.9500
N1—C71.362 (2)C14—H14A0.9500
N1—H1A0.83 (2)C15—H15A0.9800
N2—C81.463 (2)C15—H15B0.9800
N2—C151.471 (2)C15—H15C0.9800
N3—C161.462 (2)C16—C171.524 (3)
N3—C231.474 (3)C16—H16A0.9900
C1—C61.383 (3)C16—H16B0.9900
C1—C21.386 (3)C17—C221.380 (3)
C2—C31.380 (4)C17—C181.397 (3)
C2—H2A0.9500C18—C191.385 (3)
C3—C41.375 (3)C18—H18A0.9500
C3—H3A0.9500C19—C201.384 (3)
C4—C51.386 (3)C19—H19A0.9500
C4—H4A0.9500C20—C211.378 (3)
C5—C61.383 (3)C20—H20A0.9500
C6—C71.512 (3)C21—C221.396 (3)
C8—C91.529 (2)C21—H21A0.9500
C8—H8A0.9900C22—H22A0.9500
C8—H8B0.9900C23—H23A0.9800
C9—C141.389 (2)C23—H23B0.9800
C9—C101.389 (2)C23—H23C0.9800
C10—C111.395 (2)
O2—P1—N3114.81 (8)C12—C11—C10120.19 (18)
O2—P1—N2110.54 (7)C12—C11—H11A119.9
N3—P1—N2107.66 (8)C10—C11—H11A119.9
O2—P1—N1107.11 (8)C13—C12—C11119.55 (17)
N3—P1—N1107.24 (8)C13—C12—H12A120.2
N2—P1—N1109.34 (8)C11—C12—H12A120.2
C7—N1—P1126.79 (13)C12—C13—C14120.31 (18)
C7—N1—H1A116.4 (14)C12—C13—H13A119.8
P1—N1—H1A116.5 (14)C14—C13—H13A119.8
C8—N2—C15115.44 (14)C9—C14—C13120.73 (18)
C8—N2—P1125.15 (12)C9—C14—H14A119.6
C15—N2—P1116.63 (11)C13—C14—H14A119.6
C16—N3—C23116.19 (17)N2—C15—H15A109.5
C16—N3—P1126.13 (14)N2—C15—H15B109.5
C23—N3—P1117.53 (14)H15A—C15—H15B109.5
F1—C1—C6117.31 (18)N2—C15—H15C109.5
F1—C1—C2119.0 (2)H15A—C15—H15C109.5
C6—C1—C2123.7 (2)H15B—C15—H15C109.5
C3—C2—C1117.9 (2)N3—C16—C17114.79 (16)
C3—C2—H2A121.1N3—C16—H16A108.6
C1—C2—H2A121.1C17—C16—H16A108.6
C4—C3—C2121.4 (2)N3—C16—H16B108.6
C4—C3—H3A119.3C17—C16—H16B108.6
C2—C3—H3A119.3H16A—C16—H16B107.5
C3—C4—C5118.0 (2)C22—C17—C18118.77 (17)
C3—C4—H4A121.0C22—C17—C16122.46 (16)
C5—C4—H4A121.0C18—C17—C16118.76 (17)
F2—C5—C6117.05 (18)C19—C18—C17120.47 (19)
F2—C5—C4119.21 (19)C19—C18—H18A119.8
C6—C5—C4123.7 (2)C17—C18—H18A119.8
C5—C6—C1115.30 (18)C20—C19—C18120.37 (18)
C5—C6—C7121.65 (18)C20—C19—H19A119.8
C1—C6—C7123.04 (17)C18—C19—H19A119.8
O1—C7—N1123.93 (17)C21—C20—C19119.48 (19)
O1—C7—C6121.61 (16)C21—C20—H20A120.3
N1—C7—C6114.46 (15)C19—C20—H20A120.3
N2—C8—C9112.58 (14)C20—C21—C22120.33 (19)
N2—C8—H8A109.1C20—C21—H21A119.8
C9—C8—H8A109.1C22—C21—H21A119.8
N2—C8—H8B109.1C17—C22—C21120.56 (18)
C9—C8—H8B109.1C17—C22—H22A119.7
H8A—C8—H8B107.8C21—C22—H22A119.7
C14—C9—C10118.49 (16)N3—C23—H23A109.5
C14—C9—C8119.50 (15)N3—C23—H23B109.5
C10—C9—C8122.01 (15)H23A—C23—H23B109.5
C9—C10—C11120.73 (17)N3—C23—H23C109.5
C9—C10—H10A119.6H23A—C23—H23C109.5
C11—C10—H10A119.6H23B—C23—H23C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.83 (2)1.92 (2)2.752 (2)173 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5027).

References

  • Bruker (2005). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Pourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr.39, 874–880.
  • Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography