PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2486.
Published online 2010 September 4. doi:  10.1107/S1600536810034732
PMCID: PMC2983400

1,3,5-Trinitro-2,4-bis­(2-phenyl­ethen­yl)benzene

Abstract

In the title compound, C22H15N3O6, the central benzene ring and one of the phenyl rings are essentially parallel to each other, making a dihedral angle of 1.35 (16)°. The dihedral angle between the two phenyl rings is 83.56 (19)°. Intra­molecular C—H(...)N and C—H(...)O hydrogen bonds occur. In the crystal, mol­ecules are linked through C—H(...)O hydrogen bonds. Furthermore, offset face-to-face π–π inter­actions with centroid–centroid distances of 3.644 (2) Å help to stabilize the crystal structure.

Related literature

For the preparation, see: Peng et al. (1995 [triangle]). For general background to trinitro­benzene and its derivatives, see: Ott & Benziger (1987 [triangle]); Kuperman et al. (2006 [triangle]). The title compound may be useful as a high energy explosive, see: Peng et al. (1995 [triangle]). For a related structure, see: Bryden (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2486-scheme1.jpg

Experimental

Crystal data

  • C22H15N3O6
  • M r = 417.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2486-efi1.jpg
  • a = 7.0762 (14) Å
  • b = 8.6625 (17) Å
  • c = 16.717 (3) Å
  • α = 101.660 (3)°
  • β = 92.616 (3)°
  • γ = 105.122 (3)°
  • V = 963.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.32 × 0.28 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.577, T max = 1.000
  • 5265 measured reflections
  • 3363 independent reflections
  • 2146 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.236
  • S = 0.98
  • 3363 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034732/wn2408sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034732/wn2408Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the State Key Laboratory of Explosion Science and Technology Foundation (YBKT09–10, SKLEST–ZZ–09–10), Beijing Institute of Technology.

supplementary crystallographic information

Comment

Trinitrobenzene and its derivatives have been extensively reported for use as energetic materials (Ott & Benziger, 1987; Kuperman et al., 2006). The title compound may be useful as a high energy explosive (Peng et al., 1995), and here we present its crystal structure.

In the title compound (Fig. 1), the bond distances and bond angles are similar to those in 2,4,6-trintro-m-xylene (Bryden, 1972). The planes of two rings (C9—C14) and (C17—C22) are approximately parallel, with a dihedral angle of 1.35 (16)°. The two phenyl rings, (C1—C6) and (C17—C22), form a dihedral angle of 83.56 (19)°. The short distance of 3.644 (2) Å (symmetry code: -x,-y,1 - z) between the centroids of the two parallel rings (C9—C14) and (C17—C22) indicates the existence of offset face-to-face π-π interactions. Molecules are linked through C—H···O hydrogen bonds (Table 1), which help to stabilize the crystal structure. Intramolecular C—H···N and C—H···O hydrogen bonds are also present. There is a short intermolecular contact C15···C15 (1-x, -y, 1-z) of 3.185 (4) Å.

Experimental

The title compound was synthesized using 2,4,6-trinitro-m-xylene and benzaldehyde as the starting materials, according to the literature method (Peng et al., 1995). Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 Å; Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The packing of the title compound, viewed along the a-axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C22H15N3O6Z = 2
Mr = 417.37F(000) = 432
Triclinic, P1Dx = 1.439 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0762 (14) ÅCell parameters from 1118 reflections
b = 8.6625 (17) Åθ = 2.5–22.8°
c = 16.717 (3) ŵ = 0.11 mm1
α = 101.660 (3)°T = 293 K
β = 92.616 (3)°Block, colorless
γ = 105.122 (3)°0.32 × 0.28 × 0.22 mm
V = 963.5 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer3363 independent reflections
Radiation source: fine-focus sealed tube2146 reflections with I > 2σ(I)
graphiteRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −8→8
Tmin = 0.577, Tmax = 1.000k = −10→9
5265 measured reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.1716P)2] where P = (Fo2 + 2Fc2)/3
3363 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4557 (4)0.2087 (3)0.37673 (15)0.0606 (7)
O20.1502 (4)0.1919 (3)0.34477 (15)0.0629 (7)
O30.0777 (6)−0.3754 (4)0.12446 (17)0.1042 (13)
O40.0663 (6)−0.5709 (4)0.18422 (17)0.0944 (11)
O50.2954 (4)−0.4565 (3)0.47219 (15)0.0599 (7)
O60.1092 (4)−0.3227 (3)0.53578 (14)0.0558 (7)
N10.2829 (5)0.1337 (3)0.35892 (14)0.0450 (7)
N20.0966 (4)−0.4259 (4)0.18514 (18)0.0576 (8)
N30.2018 (4)−0.3561 (3)0.47819 (16)0.0413 (6)
C10.5959 (7)0.1705 (4)0.0976 (2)0.0659 (11)
H10.69730.14940.12720.079*
C20.6401 (8)0.2529 (5)0.0357 (2)0.0796 (13)
H20.76910.28600.02300.096*
C30.4936 (11)0.2845 (6)−0.0061 (3)0.0892 (16)
H30.52280.3398−0.04820.107*
C40.3043 (10)0.2385 (6)0.0110 (3)0.0914 (16)
H40.20570.2629−0.01870.110*
C50.2581 (7)0.1525 (5)0.0745 (2)0.0739 (12)
H50.12890.11990.08690.089*
C60.4058 (6)0.1181 (4)0.11752 (19)0.0533 (9)
C70.3715 (6)0.0306 (4)0.18496 (19)0.0502 (9)
H70.48200.04130.22020.060*
C80.2044 (5)−0.0607 (4)0.20150 (18)0.0479 (8)
H80.0901−0.07560.16770.057*
C90.1924 (4)−0.1401 (4)0.27196 (18)0.0403 (7)
C100.1482 (5)−0.3101 (4)0.26559 (18)0.0417 (8)
C110.1561 (4)−0.3773 (4)0.33316 (18)0.0413 (8)
H110.1338−0.48990.32710.050*
C120.1978 (4)−0.2745 (3)0.40967 (17)0.0369 (7)
C130.2335 (4)−0.1039 (3)0.42426 (17)0.0352 (7)
C140.2324 (4)−0.0458 (3)0.35209 (17)0.0358 (7)
C150.2759 (4)−0.0028 (3)0.50832 (17)0.0351 (7)
H150.3253−0.04960.54700.042*
C160.2545 (4)0.1434 (4)0.53706 (17)0.0390 (7)
H160.20980.19600.49990.047*
C170.2962 (4)0.2302 (3)0.62389 (17)0.0367 (7)
C180.3403 (5)0.3997 (4)0.6440 (2)0.0480 (8)
H180.34050.45700.60260.058*
C190.3838 (6)0.4843 (4)0.7246 (2)0.0557 (9)
H190.41470.59820.73720.067*
C200.3820 (5)0.4014 (4)0.7870 (2)0.0559 (9)
H200.41240.45890.84140.067*
C210.3350 (5)0.2343 (4)0.76815 (19)0.0519 (9)
H210.33130.17810.81020.062*
C220.2930 (5)0.1474 (4)0.68758 (18)0.0433 (8)
H220.26240.03350.67570.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0682 (18)0.0454 (14)0.0558 (15)−0.0073 (13)−0.0013 (12)0.0152 (11)
O20.0861 (19)0.0507 (15)0.0599 (16)0.0323 (14)0.0044 (13)0.0132 (12)
O30.180 (4)0.072 (2)0.0320 (16)−0.007 (2)−0.0013 (17)0.0030 (14)
O40.155 (3)0.0493 (18)0.0638 (19)0.0272 (18)−0.0128 (18)−0.0140 (14)
O50.0746 (17)0.0522 (15)0.0633 (16)0.0263 (13)0.0098 (12)0.0245 (12)
O60.0698 (16)0.0471 (14)0.0498 (15)0.0096 (12)0.0190 (12)0.0151 (11)
N10.0638 (19)0.0409 (15)0.0280 (14)0.0108 (15)0.0040 (12)0.0074 (11)
N20.068 (2)0.0486 (19)0.0429 (18)0.0054 (15)0.0006 (14)−0.0056 (14)
N30.0465 (16)0.0338 (14)0.0398 (15)0.0042 (12)0.0049 (12)0.0084 (11)
C10.096 (3)0.047 (2)0.053 (2)0.015 (2)0.020 (2)0.0127 (17)
C20.125 (4)0.057 (3)0.051 (2)0.011 (3)0.022 (3)0.015 (2)
C30.159 (5)0.058 (3)0.046 (2)0.019 (3)0.017 (3)0.014 (2)
C40.147 (5)0.075 (3)0.057 (3)0.041 (3)−0.009 (3)0.017 (2)
C50.110 (3)0.065 (3)0.053 (2)0.030 (2)0.006 (2)0.020 (2)
C60.086 (3)0.0400 (18)0.0337 (18)0.0197 (18)0.0083 (17)0.0050 (14)
C70.069 (2)0.048 (2)0.0352 (18)0.0197 (18)0.0029 (15)0.0086 (14)
C80.059 (2)0.051 (2)0.0295 (17)0.0140 (17)−0.0004 (14)0.0042 (14)
C90.0413 (17)0.0392 (17)0.0362 (17)0.0080 (13)0.0004 (13)0.0038 (13)
C100.0440 (18)0.0400 (17)0.0330 (16)0.0072 (14)0.0008 (13)−0.0035 (13)
C110.0452 (18)0.0293 (16)0.0442 (18)0.0058 (13)0.0052 (14)0.0019 (13)
C120.0367 (16)0.0353 (16)0.0368 (17)0.0074 (12)0.0032 (12)0.0074 (13)
C130.0317 (16)0.0353 (16)0.0356 (16)0.0074 (12)0.0013 (12)0.0042 (12)
C140.0377 (17)0.0320 (15)0.0344 (16)0.0067 (12)0.0027 (12)0.0039 (12)
C150.0393 (17)0.0313 (16)0.0318 (15)0.0043 (12)−0.0002 (12)0.0083 (12)
C160.0436 (18)0.0398 (17)0.0335 (16)0.0118 (13)0.0001 (13)0.0083 (13)
C170.0361 (16)0.0396 (17)0.0317 (16)0.0097 (13)0.0021 (12)0.0031 (13)
C180.065 (2)0.0358 (17)0.0421 (18)0.0130 (15)0.0056 (15)0.0073 (14)
C190.078 (2)0.0366 (18)0.046 (2)0.0108 (17)0.0036 (17)0.0008 (15)
C200.072 (2)0.050 (2)0.0381 (19)0.0164 (18)−0.0009 (16)−0.0058 (16)
C210.070 (2)0.057 (2)0.0328 (17)0.0241 (18)0.0047 (15)0.0125 (15)
C220.055 (2)0.0367 (16)0.0390 (17)0.0126 (14)0.0058 (14)0.0087 (13)

Geometric parameters (Å, °)

O1—N11.217 (3)C8—H80.9300
O2—N11.211 (3)C9—C141.394 (4)
O3—N21.199 (4)C9—C101.404 (4)
O4—N21.214 (4)C10—C111.376 (4)
O5—N31.216 (3)C11—C121.372 (4)
O6—N31.218 (3)C11—H110.9300
N1—C141.481 (4)C12—C131.401 (4)
N2—C101.472 (4)C13—C141.398 (4)
N3—C121.465 (4)C13—C151.469 (4)
C1—C21.376 (5)C15—C161.311 (4)
C1—C61.382 (5)C15—H150.9300
C1—H10.9300C16—C171.471 (4)
C2—C31.341 (7)C16—H160.9300
C2—H20.9300C17—C181.385 (4)
C3—C41.356 (7)C17—C221.397 (4)
C3—H30.9300C18—C191.376 (4)
C4—C51.420 (6)C18—H180.9300
C4—H40.9300C19—C201.379 (5)
C5—C61.370 (5)C19—H190.9300
C5—H50.9300C20—C211.364 (5)
C6—C71.476 (5)C20—H200.9300
C7—C81.315 (5)C21—C221.381 (4)
C7—H70.9300C21—H210.9300
C8—C91.475 (4)C22—H220.9300
O2—N1—O1126.0 (3)C9—C10—N2121.2 (3)
O2—N1—C14117.4 (3)C12—C11—C10118.6 (3)
O1—N1—C14116.5 (3)C12—C11—H11120.7
O3—N2—O4122.9 (3)C10—C11—H11120.7
O3—N2—C10119.5 (3)C11—C12—C13124.4 (3)
O4—N2—C10117.5 (3)C11—C12—N3115.1 (3)
O5—N3—O6124.5 (3)C13—C12—N3120.5 (2)
O5—N3—C12116.7 (3)C14—C13—C12113.1 (3)
O6—N3—C12118.8 (2)C14—C13—C15126.0 (3)
C2—C1—C6122.2 (4)C12—C13—C15120.9 (3)
C2—C1—H1118.9C9—C14—C13126.6 (3)
C6—C1—H1118.9C9—C14—N1114.9 (3)
C3—C2—C1118.7 (5)C13—C14—N1118.4 (2)
C3—C2—H2120.7C16—C15—C13129.8 (3)
C1—C2—H2120.7C16—C15—H15115.1
C2—C3—C4122.1 (5)C13—C15—H15115.1
C2—C3—H3118.9C15—C16—C17124.7 (3)
C4—C3—H3118.9C15—C16—H16117.7
C3—C4—C5119.3 (5)C17—C16—H16117.7
C3—C4—H4120.3C18—C17—C22118.3 (3)
C5—C4—H4120.3C18—C17—C16119.5 (3)
C6—C5—C4119.4 (5)C22—C17—C16122.2 (3)
C6—C5—H5120.3C19—C18—C17120.8 (3)
C4—C5—H5120.3C19—C18—H18119.6
C5—C6—C1118.3 (4)C17—C18—H18119.6
C5—C6—C7123.0 (4)C18—C19—C20120.4 (3)
C1—C6—C7118.6 (3)C18—C19—H19119.8
C8—C7—C6128.2 (3)C20—C19—H19119.8
C8—C7—H7115.9C21—C20—C19119.4 (3)
C6—C7—H7115.9C21—C20—H20120.3
C7—C8—C9122.1 (3)C19—C20—H20120.3
C7—C8—H8118.9C20—C21—C22120.9 (3)
C9—C8—H8118.9C20—C21—H21119.5
C14—C9—C10114.8 (3)C22—C21—H21119.5
C14—C9—C8120.5 (3)C21—C22—C17120.1 (3)
C10—C9—C8124.7 (3)C21—C22—H22120.0
C11—C10—C9122.3 (3)C17—C22—H22120.0
C11—C10—N2116.5 (3)
C6—C1—C2—C30.7 (6)C11—C12—C13—C14−3.0 (4)
C1—C2—C3—C40.2 (7)N3—C12—C13—C14177.4 (2)
C2—C3—C4—C5−0.6 (7)C11—C12—C13—C15179.6 (3)
C3—C4—C5—C60.1 (6)N3—C12—C13—C150.0 (4)
C4—C5—C6—C10.7 (5)C10—C9—C14—C130.4 (5)
C4—C5—C6—C7179.5 (4)C8—C9—C14—C13−177.6 (3)
C2—C1—C6—C5−1.1 (5)C10—C9—C14—N1178.9 (3)
C2—C1—C6—C7−180.0 (3)C8—C9—C14—N10.8 (4)
C5—C6—C7—C818.2 (5)C12—C13—C14—C92.8 (4)
C1—C6—C7—C8−163.0 (4)C15—C13—C14—C9−179.9 (3)
C6—C7—C8—C9−179.5 (3)C12—C13—C14—N1−175.6 (2)
C7—C8—C9—C1465.4 (4)C15—C13—C14—N11.7 (4)
C7—C8—C9—C10−112.4 (4)O2—N1—C14—C974.1 (3)
C14—C9—C10—C11−3.9 (4)O1—N1—C14—C9−104.5 (3)
C8—C9—C10—C11174.0 (3)O2—N1—C14—C13−107.4 (3)
C14—C9—C10—N2178.0 (3)O1—N1—C14—C1374.1 (3)
C8—C9—C10—N2−4.0 (5)C14—C13—C15—C1626.2 (5)
O3—N2—C10—C11176.3 (3)C12—C13—C15—C16−156.8 (3)
O4—N2—C10—C11−0.5 (5)C13—C15—C16—C17177.8 (3)
O3—N2—C10—C9−5.6 (5)C15—C16—C17—C18156.0 (3)
O4—N2—C10—C9177.7 (3)C15—C16—C17—C22−24.0 (5)
C9—C10—C11—C123.8 (5)C22—C17—C18—C191.4 (5)
N2—C10—C11—C12−178.1 (3)C16—C17—C18—C19−178.7 (3)
C10—C11—C12—C13−0.1 (5)C17—C18—C19—C20−0.8 (5)
C10—C11—C12—N3179.5 (3)C18—C19—C20—C21−0.5 (6)
O5—N3—C12—C1147.8 (4)C19—C20—C21—C221.2 (5)
O6—N3—C12—C11−130.5 (3)C20—C21—C22—C17−0.6 (5)
O5—N3—C12—C13−132.5 (3)C18—C17—C22—C21−0.7 (5)
O6—N3—C12—C1349.1 (4)C16—C17—C22—C21179.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···O20.932.603.398 (4)144
C16—H16···N10.932.422.980 (4)119
C18—H18···O5i0.932.483.387 (4)166

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2408).

References

  • Bruker (2002). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SADABS and SAINT-Plus Bruker AXS Inc, Madison, Wisconsin, USA.
  • Bryden, J. H. (1972). Acta Cryst. B28, 1395–1398.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kuperman, R. G., Checkai, R. T., Simini, M., Phillips, C. T., Kolakowski, J. E. & Kurnas, C. W. (2006). Environ. Toxicol. Chem.25, 1368–1375. [PubMed]
  • Ott, D. G. & Benziger, T. M. (1987). J. Energ. Mater, 5, 343–354.
  • Peng, X. H., Chen, T. Y., Lu, C. X. & Sun, R. K. (1995). Org. Prep. Proceed. Int.27, 475–479.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography