PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1311.
Published online 2010 September 30. doi:  10.1107/S1600536810037426
PMCID: PMC2983398

4-Cyano-1-(4-nitro­benz­yl)pyridinium bis­(2-thioxo-1,3-dithiole-4,5-dithiol­ato-κ2 S 4,S 5)nickelate(III)

Abstract

In the title salt, (C13H10N3O2)[Ni(C3S5)2], the NiIII cation is S,S′-chelated by two 2-thioxo-1,3-dithiole-4,5-dithiol­ate anions in a distorted square-planar geometry. The complex anion is approximately planar with a maximum deviation of 0.097 (1) Å. In the 1-(4-nitro­benz­yl)-4-cyano­pyridinium cation, the pyridine ring is twisted at a dihedral angle of 73.84 (16)° with respect to the benzene ring. π-π stacking is observed between nearly parallel [dihedral angle = 4.71 (7)°] dithiole and benzene rings, the centroid–centroid distance being 3.791 (2) Å.

Related literature

For background to and applications of dithiol­ate metal complexes, see: Akutagawa & Nakamura (2000 [triangle]); Cassoux (1999 [triangle]). For the structure of a complex with a 2-thioxo-1,3-dithiole-4,5-dithiol­ate ligand, see: Zang et al. (2006 [triangle]). For weak inter­molecular inter­actions, see: Egli & Sarkhel (2007 [triangle]); Tian et al. (2007 [triangle]); Cundari et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1311-scheme1.jpg

Experimental

Crystal data

  • (C13H10N3O2)[Ni(C3S5)2]
  • M r = 691.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1311-efi1.jpg
  • a = 8.4896 (17) Å
  • b = 25.789 (5) Å
  • c = 12.043 (3) Å
  • β = 106.181 (3)°
  • V = 2532.3 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.62 mm−1
  • T = 296 K
  • 0.20 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.738, T max = 0.794
  • 12415 measured reflections
  • 4423 independent reflections
  • 3343 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.090
  • S = 1.02
  • 4423 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037426/xu5018sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037426/xu5018Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the North China University of Water Conservancy and Electric Power, China.

supplementary crystallographic information

Comment

Bis-dithiolate metal ion-pair complexes have been actively studied for a long time as a wide range of conducting and magneticmaterials as well as nonlinear opticalmaterials (Cassoux, 1999). 2-Thioxo-1,3-dithiole-4,5-dithiolate metal complex also is excellent building block employed for the construction of molecular magnetic materials (Zang et al., 2006) apart from its well known electric conductivity molecular conductors (Akutagawa & Nakamura, 2000). We report herein the synthesis and crystal structure of the new ion-pair complex.

The title compound (I) comprises [NiIII(dmit)2]- anions (where dmit = 2-thioxo-1,3-dithiole-4,5-dithiolate) and 1-(4-nitrobenzyl)-4-cyanopyridinium cations (Figure 1). The NiIII ion adopts a square-planar geometry coordinated by four S atoms of two dmit ligands, with Ni—S bond lengths ranging from 2.157 to 2.166 Å. Two [NiIII(dmit)2]- anions form pairs across centres of inversion, with their least squares planes parallel and Ni1···Ni1i= 3.668 Å, S1···S10i= 3.636 Å, [symmetry code: (i) -x, 1 - y, 1 - z]. Neighbouring anion pairs are nearly vertical or parallel arrangements so that S···S interactions in this region include S5···S7ii = 3.606, S5···S9ii = 3.473, S7···S5ii = 3.506, S7···S7ii = 3.471 and S10i···S2iii = 3.496 Å [symmetry codes: (ii) 1 - x, 1 - y, 1 - z; (iii) x, 1.5 - y, 1/2 + z]. The adjacent [NO2CNbzpy]+ cations adopting edge-to-face inversion arrangements are associated together through lone pair-aromatic interactions (lp···π: O2-centroid distance 2.953 Å) (Egli & Sarkhel, 2007) between the oxygen atom of nitro group and the pyridine ring from neighboring cation and CN···π interactions (C10···N1iii distance 3.010 Å) (Tian et al., 2007) between the CN group at the end of the cations and the pyridine ring of the adjacent cation. In addition, there is π···π interaction (centroid-centroid distance 3.625 Å) between phenyl ring of [NO2CNbzpy]+ cation and the ethylene group (C4═C5) of [NiIII(dmit)2]- anion and donor-acceptor interaction between anion and cation (S1···C11 iii distance 3.234 Å [symmetry codes (iii) x, 1.5 - y, 1/2 + z]) (Cundari et al., 2010). The weak S···S, CN···π, lp···π, donor-acceptor and π···π interactions lead a three-dimensional supramolecular structure (Figure 2).

Experimental

4,5-Bis(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2.0 mmol) was suspended in dry methanol (20 ml) and sodium (92 mg, 4.0 mmol) was added under a nitrogen atmosphere at room temperature to give a bright-red solution. NiCl2.6H2O (238 mg, 1 mmol) was then added, followed successively by I2 (127 mg, 0.5 mmol) and a solution of 1-(4-nitrobenzyl)-4-cyanopyridinium chloride (276 mg, 1 mmol) in methanol at an interval of approximately 20 min. The solution was stirred for a further 30 min and the resulting solid collected by filtration. Single crystals of the title complound were obtained by evaporation of a dilute acetone solution over 2 weeks at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2.

Figures

Fig. 1.
The cation and anion in (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Three-dimensional supramolecular structure of (I). Hydrogen atoms have been omitted for clarity. Dashed lines indicate weak S···S, CN···π, lp···π, donor-acceptor and ...

Crystal data

(C13H10N3O2)[Ni(C3S5)2]F(000) = 1396
Mr = 691.61Dx = 1.814 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 947 reflections
a = 8.4896 (17) Åθ = 2.4–24.3°
b = 25.789 (5) ŵ = 1.62 mm1
c = 12.043 (3) ÅT = 296 K
β = 106.181 (3)°Block, black
V = 2532.3 (9) Å30.20 × 0.17 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area detector diffractometer4423 independent reflections
Radiation source: fine-focus sealed tube3343 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −9→10
Tmin = 0.738, Tmax = 0.794k = −30→21
12415 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0387P)2 + 0.150P] where P = (Fo2 + 2Fc2)/3
4423 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.12504 (5)0.535201 (17)0.42287 (3)0.04673 (14)
O10.2608 (4)0.40743 (10)−0.0690 (2)0.0797 (9)
O20.5120 (4)0.39512 (10)0.0279 (2)0.0754 (8)
N10.5275 (4)0.80533 (13)−0.0531 (3)0.0746 (10)
N20.4084 (3)0.64870 (9)0.1936 (2)0.0424 (6)
N30.3834 (4)0.41930 (11)0.0065 (2)0.0552 (8)
S10.08507 (13)0.76215 (4)0.75005 (9)0.0690 (3)
S2−0.05329 (12)0.69214 (4)0.55265 (9)0.0660 (3)
S30.27096 (11)0.67162 (4)0.69657 (8)0.0602 (3)
S4−0.05363 (11)0.59682 (4)0.40526 (8)0.0620 (3)
S50.29798 (11)0.57297 (4)0.56561 (8)0.0578 (3)
S6−0.04453 (10)0.49687 (4)0.27893 (8)0.0581 (3)
S70.30541 (10)0.47438 (4)0.44187 (8)0.0559 (3)
S8−0.01230 (12)0.39818 (4)0.15167 (8)0.0661 (3)
S90.31466 (11)0.37927 (4)0.29563 (8)0.0596 (3)
S100.16951 (15)0.30728 (4)0.10160 (11)0.0842 (4)
C10.0997 (4)0.71136 (13)0.6712 (3)0.0553 (9)
C20.0396 (4)0.63686 (13)0.5171 (3)0.0514 (9)
C30.1933 (4)0.62697 (13)0.5861 (3)0.0499 (9)
C40.0626 (4)0.44299 (13)0.2605 (3)0.0510 (9)
C50.2162 (4)0.43352 (13)0.3297 (3)0.0487 (8)
C60.1579 (4)0.35837 (14)0.1780 (3)0.0602 (10)
C80.4722 (4)0.72766 (12)0.0638 (3)0.0442 (8)
C90.5968 (4)0.70593 (12)0.1495 (3)0.0480 (8)
H90.70350.71840.16430.058*
C100.5612 (4)0.66582 (12)0.2124 (3)0.0472 (8)
H100.64510.65030.26930.057*
C110.2853 (4)0.66928 (12)0.1100 (3)0.0458 (8)
H110.17930.65650.09760.055*
C120.3145 (4)0.70877 (12)0.0432 (3)0.0484 (8)
H120.22950.7228−0.01530.058*
C130.3706 (4)0.60448 (12)0.2623 (3)0.0511 (9)
H13A0.26370.60970.27490.061*
H13B0.45160.60310.33720.061*
C140.5122 (4)0.52460 (13)0.2208 (3)0.0485 (9)
H140.60520.53480.27810.058*
C150.3716 (4)0.55425 (11)0.1992 (2)0.0404 (7)
C160.2328 (4)0.53870 (12)0.1150 (3)0.0476 (8)
H160.13710.55810.10130.057*
C170.2358 (4)0.49449 (12)0.0513 (3)0.0474 (8)
H170.14350.4841−0.00640.057*
C180.3785 (4)0.46620 (12)0.0752 (2)0.0415 (8)
C190.5162 (4)0.48020 (13)0.1588 (3)0.0484 (8)
H190.61090.46020.17350.058*
C200.5035 (4)0.77070 (14)−0.0025 (3)0.0538 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0354 (2)0.0605 (3)0.0427 (3)0.0008 (2)0.00814 (19)0.0116 (2)
O10.094 (2)0.0649 (18)0.0670 (18)−0.0028 (15)0.0001 (16)−0.0202 (14)
O20.083 (2)0.0650 (18)0.0817 (19)0.0176 (16)0.0288 (16)−0.0093 (14)
N10.084 (2)0.070 (2)0.068 (2)−0.0089 (19)0.0177 (19)0.0166 (18)
N20.0533 (17)0.0397 (15)0.0352 (14)−0.0012 (13)0.0137 (13)−0.0033 (12)
N30.075 (2)0.0465 (19)0.0471 (18)−0.0005 (17)0.0216 (17)0.0048 (14)
S10.0714 (7)0.0700 (7)0.0707 (7)0.0025 (5)0.0282 (5)0.0038 (5)
S20.0494 (6)0.0619 (6)0.0801 (7)0.0097 (5)0.0074 (5)0.0082 (5)
S30.0480 (5)0.0662 (6)0.0623 (6)0.0019 (5)0.0082 (4)0.0029 (5)
S40.0433 (5)0.0683 (7)0.0632 (6)0.0080 (4)−0.0037 (4)0.0067 (5)
S50.0409 (5)0.0680 (6)0.0569 (6)0.0088 (4)0.0011 (4)0.0029 (5)
S60.0376 (5)0.0763 (7)0.0546 (6)0.0032 (4)0.0031 (4)0.0042 (5)
S70.0403 (5)0.0726 (6)0.0486 (5)0.0074 (4)0.0022 (4)0.0011 (4)
S80.0549 (6)0.0742 (7)0.0610 (6)−0.0100 (5)0.0026 (5)−0.0021 (5)
S90.0533 (6)0.0602 (6)0.0634 (6)0.0004 (5)0.0133 (5)0.0046 (5)
S100.0937 (9)0.0676 (7)0.0933 (8)−0.0168 (6)0.0295 (7)−0.0164 (6)
C10.051 (2)0.058 (2)0.062 (2)−0.0038 (17)0.0230 (18)0.0135 (18)
C20.0419 (19)0.051 (2)0.061 (2)0.0022 (16)0.0148 (17)0.0148 (17)
C30.046 (2)0.051 (2)0.052 (2)−0.0036 (16)0.0117 (16)0.0121 (16)
C40.044 (2)0.062 (2)0.047 (2)−0.0052 (17)0.0128 (16)0.0072 (17)
C50.0421 (19)0.060 (2)0.0463 (19)−0.0017 (16)0.0159 (16)0.0101 (16)
C60.060 (2)0.066 (2)0.056 (2)−0.0156 (19)0.0190 (18)0.0090 (18)
C80.057 (2)0.0373 (19)0.0412 (19)−0.0013 (16)0.0175 (16)−0.0019 (15)
C90.049 (2)0.049 (2)0.046 (2)−0.0029 (16)0.0124 (16)0.0001 (16)
C100.052 (2)0.048 (2)0.0385 (18)0.0043 (17)0.0067 (15)−0.0020 (16)
C110.048 (2)0.040 (2)0.051 (2)−0.0027 (16)0.0153 (16)−0.0069 (16)
C120.053 (2)0.043 (2)0.0460 (19)0.0058 (16)0.0087 (16)−0.0009 (16)
C130.071 (2)0.047 (2)0.0395 (18)−0.0047 (18)0.0208 (17)0.0023 (16)
C140.048 (2)0.056 (2)0.0364 (18)−0.0059 (16)0.0029 (15)0.0038 (16)
C150.050 (2)0.0405 (18)0.0329 (16)−0.0041 (15)0.0144 (15)0.0059 (14)
C160.0411 (18)0.046 (2)0.055 (2)0.0015 (15)0.0122 (16)0.0055 (17)
C170.0404 (19)0.046 (2)0.050 (2)−0.0060 (16)0.0036 (16)0.0034 (16)
C180.054 (2)0.0370 (18)0.0370 (17)−0.0027 (15)0.0175 (15)0.0038 (14)
C190.047 (2)0.050 (2)0.046 (2)0.0050 (16)0.0102 (16)0.0078 (16)
C200.061 (2)0.052 (2)0.047 (2)−0.0031 (18)0.0120 (18)0.0024 (18)

Geometric parameters (Å, °)

Ni1—S52.1570 (10)C2—C31.362 (4)
Ni1—S72.1591 (10)C4—C51.360 (4)
Ni1—S62.1596 (10)C8—C91.375 (4)
Ni1—S42.1661 (10)C8—C121.380 (4)
O1—N31.215 (3)C8—C201.434 (5)
O2—N31.220 (4)C9—C101.365 (4)
N1—C201.132 (4)C9—H90.9300
N2—C101.328 (4)C10—H100.9300
N2—C111.343 (4)C11—C121.362 (4)
N2—C131.495 (4)C11—H110.9300
N3—C181.473 (4)C12—H120.9300
S1—C11.643 (4)C13—C151.503 (4)
S2—C11.714 (4)C13—H13A0.9700
S2—C21.740 (4)C13—H13B0.9700
S3—C11.735 (4)C14—C191.373 (4)
S3—C31.744 (3)C14—C151.379 (4)
S4—C21.707 (4)C14—H140.9300
S5—C31.707 (4)C15—C161.383 (4)
S6—C41.709 (4)C16—C171.378 (4)
S7—C51.714 (3)C16—H160.9300
S8—C61.728 (4)C17—C181.375 (4)
S8—C41.730 (3)C17—H170.9300
S9—C51.736 (4)C18—C191.362 (4)
S9—C61.738 (4)C19—H190.9300
S10—C61.626 (4)
S5—Ni1—S786.47 (4)C9—C8—C20120.7 (3)
S5—Ni1—S6178.98 (4)C12—C8—C20119.6 (3)
S7—Ni1—S692.69 (4)C10—C9—C8118.9 (3)
S5—Ni1—S492.83 (4)C10—C9—H9120.6
S7—Ni1—S4179.28 (4)C8—C9—H9120.6
S6—Ni1—S488.01 (4)N2—C10—C9120.9 (3)
C10—N2—C11121.1 (3)N2—C10—H10119.5
C10—N2—C13120.6 (3)C9—C10—H10119.5
C11—N2—C13118.3 (3)N2—C11—C12120.4 (3)
O1—N3—O2124.0 (3)N2—C11—H11119.8
O1—N3—C18118.4 (3)C12—C11—H11119.8
O2—N3—C18117.7 (3)C11—C12—C8119.0 (3)
C1—S2—C298.72 (17)C11—C12—H12120.5
C1—S3—C397.80 (16)C8—C12—H12120.5
C2—S4—Ni1102.02 (12)N2—C13—C15110.2 (2)
C3—S5—Ni1102.58 (11)N2—C13—H13A109.6
C4—S6—Ni1102.50 (11)C15—C13—H13A109.6
C5—S7—Ni1102.63 (12)N2—C13—H13B109.6
C6—S8—C498.39 (16)C15—C13—H13B109.6
C5—S9—C697.64 (17)H13A—C13—H13B108.1
S1—C1—S2123.4 (2)C19—C14—C15120.7 (3)
S1—C1—S3124.3 (2)C19—C14—H14119.6
S2—C1—S3112.3 (2)C15—C14—H14119.6
C3—C2—S4121.6 (3)C14—C15—C16119.5 (3)
C3—C2—S2115.2 (3)C14—C15—C13120.6 (3)
S4—C2—S2123.19 (19)C16—C15—C13119.8 (3)
C2—C3—S5120.9 (3)C17—C16—C15120.3 (3)
C2—C3—S3115.9 (3)C17—C16—H16119.9
S5—C3—S3123.24 (19)C15—C16—H16119.9
C5—C4—S6121.4 (3)C18—C17—C16118.3 (3)
C5—C4—S8115.6 (3)C18—C17—H17120.9
S6—C4—S8123.02 (19)C16—C17—H17120.9
C4—C5—S7120.7 (3)C19—C18—C17122.6 (3)
C4—C5—S9116.3 (3)C19—C18—N3118.7 (3)
S7—C5—S9123.06 (19)C17—C18—N3118.6 (3)
S10—C6—S8123.9 (2)C18—C19—C14118.5 (3)
S10—C6—S9124.0 (2)C18—C19—H19120.8
S8—C6—S9112.1 (2)C14—C19—H19120.8
C9—C8—C12119.7 (3)N1—C20—C8178.6 (4)
S5—Ni1—S4—C2−3.08 (12)C6—S9—C5—C4−0.8 (3)
S6—Ni1—S4—C2177.50 (12)C6—S9—C5—S7−179.6 (2)
S7—Ni1—S5—C3−177.63 (12)C4—S8—C6—S10−179.0 (2)
S4—Ni1—S5—C32.52 (12)C4—S8—C6—S91.1 (2)
S7—Ni1—S6—C4−2.01 (12)C5—S9—C6—S10179.7 (2)
S4—Ni1—S6—C4177.84 (12)C5—S9—C6—S8−0.4 (2)
S5—Ni1—S7—C5−176.49 (12)C12—C8—C9—C100.2 (5)
S6—Ni1—S7—C52.94 (12)C20—C8—C9—C10178.5 (3)
C2—S2—C1—S1−177.9 (2)C11—N2—C10—C92.0 (5)
C2—S2—C1—S32.8 (2)C13—N2—C10—C9179.5 (3)
C3—S3—C1—S1177.6 (2)C8—C9—C10—N2−1.7 (5)
C3—S3—C1—S2−3.1 (2)C10—N2—C11—C12−0.7 (5)
Ni1—S4—C2—C33.3 (3)C13—N2—C11—C12−178.4 (3)
Ni1—S4—C2—S2−175.84 (18)N2—C11—C12—C8−0.8 (5)
C1—S2—C2—C3−1.3 (3)C9—C8—C12—C111.0 (5)
C1—S2—C2—S4177.9 (2)C20—C8—C12—C11−177.3 (3)
S4—C2—C3—S5−1.5 (4)C10—N2—C13—C15−93.8 (3)
S2—C2—C3—S5177.70 (18)C11—N2—C13—C1583.8 (4)
S4—C2—C3—S3−179.97 (18)C19—C14—C15—C160.7 (5)
S2—C2—C3—S3−0.7 (4)C19—C14—C15—C13−176.3 (3)
Ni1—S5—C3—C2−1.2 (3)N2—C13—C15—C1493.1 (3)
Ni1—S5—C3—S3177.12 (18)N2—C13—C15—C16−84.0 (4)
C1—S3—C3—C22.4 (3)C14—C15—C16—C17−1.4 (5)
C1—S3—C3—S5−176.0 (2)C13—C15—C16—C17175.7 (3)
Ni1—S6—C4—C50.3 (3)C15—C16—C17—C181.1 (5)
Ni1—S6—C4—S8−177.69 (18)C16—C17—C18—C19−0.1 (5)
C6—S8—C4—C5−1.7 (3)C16—C17—C18—N3−179.2 (3)
C6—S8—C4—S6176.4 (2)O1—N3—C18—C19−179.0 (3)
S6—C4—C5—S72.4 (4)O2—N3—C18—C19−0.1 (4)
S8—C4—C5—S7−179.46 (18)O1—N3—C18—C170.1 (4)
S6—C4—C5—S9−176.42 (18)O2—N3—C18—C17179.0 (3)
S8—C4—C5—S91.7 (4)C17—C18—C19—C14−0.5 (5)
Ni1—S7—C5—C4−3.7 (3)N3—C18—C19—C14178.5 (3)
Ni1—S7—C5—S9175.08 (17)C15—C14—C19—C180.2 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5018).

References

  • Akutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev.198, 297–311.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cassoux, P. (1999). Coord. Chem. Rev.185–186, 213–232.
  • Cundari, T. R., Chilukuri, B., Hudson, J. M., Minot, C., Omary, M. A. & Rabaâ, H. (2010). Organometallics, 29, 795–800.
  • Egli, M. & Sarkhel, S. J. (2007). Acc. Chem. Res.40, 197–205. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, Z.-F., Ren, X.-M., Li, Y.-Z., Song, Y. & Meng, Q.-J. (2007). Inorg. Chem.46, 8102–8104. [PubMed]
  • Zang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004–m1005.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography