PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2543.
Published online 2010 September 11. doi:  10.1107/S1600536810035439
PMCID: PMC2983395

2-(2-Nitro­anilino)-4,5,6,7-tetra­hydro­benzo[b]thio­phene-3-carbonitrile

Abstract

The title compound, C15H13N3O2S, was synthesized by the reaction of 2-amino-5,6,7,8-tetra­hydro-4H-cyclo­hepta­[b]thio­phene-3-carbonitrile and o-fluoro­nitro­benzene. The dihedral angle between the thio­phene and nitro­phenyl rings is 75.15 (2)°. In the crystal, inter­molecular N—H(...)N and C—H(...)O inter­actions lead to the formation of a supra­molecular chain extending along the c-axis direction.

Related literature

For background to 2-substituted thio­phenes, see: Puterová et al. (2009 [triangle]). For the biological activity of 2-amino-benzo[b]thio­phene derivatives, see: Fakhr et al. (2008 [triangle]); Baraldi et al. (2006 [triangle]). For the synthesis of 2-amino thio­phenes, see: Gewald et al. (1966 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2543-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O2S
  • M r = 299.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2543-efi1.jpg
  • a = 13.2764 (4) Å
  • b = 13.4447 (7) Å
  • c = 8.2237 (4) Å
  • β = 106.794 (2)°
  • V = 1405.30 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 295 K
  • 0.27 × 0.19 × 0.17 mm

Data collection

  • Nonius KappaCCD diffractometer
  • 9590 measured reflections
  • 3241 independent reflections
  • 2351 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.174
  • S = 1.06
  • 3241 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Nonius, 1997 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035439/tk2704sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035439/tk2704Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work has received partial support from CNPq, CAPES, FACEPE and FINEP.

supplementary crystallographic information

Comment

The various uses of 2-substituted thiophenes have been well documented (Puterová et al., 2009). Amongst these applications, some 2-substituted benzo[b]thiophenes derivatives present anti-inflammatory and analgesic activities (Fakhr et al., 2008), and others are adenosine A1 allosteric enhancers (Baraldi et al., 2006). In this work, we report the structure of the title compound prepared by the reaction of 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile and o-fluoro-nitrobenzene.

In the title compound, Fig. 1, the dihedral angle between least-squares planes passing through atoms of thiophene and nitrophenyl rings is 75.15 (2) °. The cyclohexane ring adopts a half-chair conformation with calculated puckering parameters of: q2 = 0.285 (5) Å, q3 = -0.240 (3) Å, QT = 0.373 (4) Å, θ = 130.2 (3) °, [var phi] = -27.5 (6) ° (Cremer & Pople, 1975). In the packing, intermolecular N–H···N and C—H··· O interactions lead to the formation a supramolecular polymeric chain that extends along the c direction; Table 2 & Fig.2.

Experimental

Under nitrogen and at 273 K, a dry THF solution (80 ml) of 2-amino-4,5,6,7- tetrahydro-4H-benzo[b]thiophene-3-carbonitrile (0.07 mol) and o-fluoro-nitrobenzene (0.07 mol) was added drop wise to a stirred suspension of NaH (0.105 mol) in dry THF (20 ml). The reaction mixture was stirred at room temperature for 24 h. The resulting mixture was adjusted to pH = 5 with 2 N HCl and then extracted with CHCl3. The extract was washed with aqueous Na2CO3 and water, dried over CaCl2, and evaporated under reduced pressure. The dark-red solid obtained was purified by recrystallization from absolute ethanol, affording the title compound as red crystals; yield 11.72 g (56%), m.pt 275–276 K (Gewald et al., 1966). Crystals were grown by evaporation at room temperature of its dichloromethane solution.

NMR 1H (200 MHz, CDCl3) δ: 1.84–1.87 (m, 4H), 2.63–2.73 (m, 4H), 6.91 (dt, 1H, J = 8.6, 1.4 Hz), 7.18 (dd, 1H, J = 8.6, 1.0 Hz), 7.51 (dt, 1H, J = 8.6, 8.2, 7.4 Hz), 8.22 (dd, 1H, J = 8.4, 1.4 Hz), 9.6 (s, 1H) p.p.m.

Refinement

All H atoms attached were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.
Projection of C15H13N3O2S, showing atom labelling and 50% probability displacement ellipsoids.
Fig. 2.
View of the packing along b axis showing intermolecular interactions as blue dashed lines.

Crystal data

C15H13N3O2SF(000) = 624
Mr = 299.34Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4953 reflections
a = 13.2764 (4) Åθ = 2.9–27.5°
b = 13.4447 (7) ŵ = 0.24 mm1
c = 8.2237 (4) ÅT = 295 K
β = 106.794 (2)°Prism, yellow
V = 1405.30 (11) Å30.27 × 0.19 × 0.17 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2351 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.051
horizonally mounted graphite crystalθmax = 27.5°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = −17→17
CCD rotation images,thick slices scansk = −17→17
9590 measured reflectionsl = −9→10
3241 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.174w = 1/[σ2(Fo2) + (0.1015P)2 + 0.2662P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3241 reflectionsΔρmax = 0.45 e Å3
192 parametersΔρmin = −0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.133 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.22931 (15)−0.11377 (16)−0.8690 (3)0.0489 (5)
C2−0.17013 (15)−0.19140 (16)−0.7859 (2)0.0470 (5)
C3−0.06070 (15)−0.16847 (17)−0.7171 (3)0.0494 (5)
C40.02377 (17)−0.2391 (2)−0.6205 (3)0.0620 (6)
H4A0.0009−0.2717−0.53220.074*
H4B0.0352−0.2898−0.69720.074*
C50.1254 (2)−0.1846 (3)−0.5417 (5)0.1058 (12)
H5A0.1231−0.1586−0.43280.127*
H5B0.1823−0.2325−0.51960.127*
C60.1505 (2)−0.1041 (3)−0.6378 (6)0.1056 (13)
H6A0.1667−0.1319−0.73620.127*
H6B0.2138−0.0720−0.56860.127*
C70.06661 (19)−0.0251 (2)−0.6990 (4)0.0700 (7)
H7A0.07050.0225−0.60880.084*
H7B0.07830.0102−0.79480.084*
C8−0.04015 (15)−0.07297 (18)−0.7510 (3)0.0540 (5)
C9−0.41366 (15)−0.11662 (14)−0.8689 (3)0.0449 (5)
C10−0.38494 (18)−0.10942 (18)−0.6915 (3)0.0560 (6)
H10−0.3142−0.1031−0.63140.067*
C11−0.4588 (2)−0.1114 (2)−0.6043 (3)0.0649 (6)
H11−0.4374−0.1062−0.48650.078*
C12−0.5649 (2)−0.1210 (2)−0.6897 (4)0.0703 (7)
H12−0.6145−0.1229−0.62980.084*
C13−0.59545 (18)−0.12779 (18)−0.8620 (4)0.0622 (6)
H13−0.6665−0.1338−0.92020.075*
C14−0.52138 (16)−0.12570 (15)−0.9526 (3)0.0486 (5)
C15−0.21465 (15)−0.28666 (18)−0.7727 (3)0.0519 (5)
N1−0.25004 (17)−0.36281 (16)−0.7606 (3)0.0673 (6)
N2−0.33714 (13)−0.11309 (15)−0.9523 (2)0.0524 (5)
H2−0.3569−0.1103−1.06140.063*
N3−0.56173 (15)−0.13233 (14)−1.1361 (3)0.0572 (5)
O1−0.49971 (14)−0.12880 (15)−1.2218 (2)0.0713 (5)
O2−0.65641 (14)−0.14080 (17)−1.2012 (3)0.0866 (6)
S1−0.15219 (4)−0.01029 (5)−0.86321 (8)0.0610 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0350 (10)0.0626 (12)0.0490 (11)0.0004 (8)0.0119 (8)0.0021 (9)
C20.0348 (9)0.0602 (12)0.0452 (10)0.0001 (8)0.0105 (8)0.0005 (9)
C30.0342 (10)0.0649 (12)0.0479 (10)0.0015 (8)0.0103 (8)−0.0039 (9)
C40.0414 (11)0.0756 (15)0.0637 (13)0.0065 (10)0.0066 (10)0.0019 (12)
C50.0452 (15)0.113 (3)0.134 (3)0.0006 (15)−0.0129 (17)0.017 (2)
C60.0401 (14)0.111 (3)0.155 (4)−0.0094 (14)0.0110 (17)0.012 (2)
C70.0415 (11)0.0811 (17)0.0843 (17)−0.0116 (11)0.0133 (11)−0.0086 (14)
C80.0371 (10)0.0652 (13)0.0598 (12)−0.0011 (9)0.0140 (9)−0.0044 (10)
C90.0365 (9)0.0465 (10)0.0504 (10)0.0035 (7)0.0104 (8)0.0042 (8)
C100.0433 (11)0.0699 (14)0.0537 (12)0.0050 (10)0.0123 (9)0.0017 (10)
C110.0588 (14)0.0817 (17)0.0590 (13)0.0141 (12)0.0246 (11)0.0063 (12)
C120.0552 (14)0.0834 (18)0.0825 (18)0.0101 (12)0.0363 (13)0.0121 (14)
C130.0391 (11)0.0643 (14)0.0836 (17)0.0018 (9)0.0182 (11)0.0075 (12)
C140.0375 (10)0.0461 (10)0.0590 (12)0.0030 (8)0.0088 (9)0.0038 (9)
C150.0373 (10)0.0654 (13)0.0502 (11)0.0030 (9)0.0081 (8)0.0052 (10)
N10.0534 (11)0.0684 (13)0.0759 (13)−0.0033 (10)0.0121 (10)0.0102 (10)
N20.0335 (8)0.0765 (12)0.0444 (9)0.0030 (8)0.0069 (7)0.0035 (8)
N30.0420 (9)0.0574 (11)0.0631 (11)0.0020 (8)0.0010 (8)−0.0018 (9)
O10.0580 (10)0.0953 (14)0.0540 (9)−0.0013 (9)0.0056 (8)0.0017 (9)
O20.0413 (9)0.1135 (16)0.0871 (13)0.0028 (9)−0.0099 (9)−0.0141 (11)
S10.0445 (4)0.0594 (4)0.0757 (5)−0.0014 (2)0.0119 (3)0.0052 (3)

Geometric parameters (Å, °)

C1—C21.365 (3)C7—H7B0.9700
C1—N21.397 (2)C8—S11.727 (2)
C1—S11.720 (2)C9—N21.381 (2)
C2—C151.428 (3)C9—C101.401 (3)
C2—C31.432 (3)C9—C141.402 (3)
C3—C81.358 (3)C10—C111.372 (3)
C3—C41.508 (3)C10—H100.9300
C4—C51.507 (4)C11—C121.386 (4)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—C131.360 (4)
C5—C61.436 (5)C12—H120.9300
C5—H5A0.9700C13—C141.395 (3)
C5—H5B0.9700C13—H130.9300
C6—C71.516 (4)C14—N31.451 (3)
C6—H6A0.9700C15—N11.143 (3)
C6—H6B0.9700N2—H20.8600
C7—C81.502 (3)N3—O21.221 (3)
C7—H7A0.9700N3—O11.230 (3)
C2—C1—N2127.62 (19)C6—C7—H7B109.7
C2—C1—S1110.65 (15)H7A—C7—H7B108.2
N2—C1—S1121.72 (16)C3—C8—C7125.1 (2)
C1—C2—C15122.20 (18)C3—C8—S1112.21 (15)
C1—C2—C3113.87 (19)C7—C8—S1122.6 (2)
C15—C2—C3123.92 (19)N2—C9—C10119.80 (18)
C8—C3—C2111.30 (19)N2—C9—C14123.48 (19)
C8—C3—C4122.69 (19)C10—C9—C14116.71 (19)
C2—C3—C4126.0 (2)C11—C10—C9121.5 (2)
C5—C4—C3111.0 (2)C11—C10—H10119.2
C5—C4—H4A109.4C9—C10—H10119.2
C3—C4—H4A109.4C10—C11—C12120.8 (2)
C5—C4—H4B109.4C10—C11—H11119.6
C3—C4—H4B109.4C12—C11—H11119.6
H4A—C4—H4B108.0C13—C12—C11119.2 (2)
C6—C5—C4116.8 (3)C13—C12—H12120.4
C6—C5—H5A108.1C11—C12—H12120.4
C4—C5—H5A108.1C12—C13—C14120.7 (2)
C6—C5—H5B108.1C12—C13—H13119.6
C4—C5—H5B108.1C14—C13—H13119.6
H5A—C5—H5B107.3C13—C14—C9121.1 (2)
C5—C6—C7116.4 (3)C13—C14—N3116.7 (2)
C5—C6—H6A108.2C9—C14—N3122.25 (19)
C7—C6—H6A108.2N1—C15—C2179.4 (2)
C5—C6—H6B108.2C9—N2—C1123.57 (17)
C7—C6—H6B108.2C9—N2—H2118.2
H6A—C6—H6B107.3C1—N2—H2118.2
C8—C7—C6109.7 (2)O2—N3—O1121.8 (2)
C8—C7—H7A109.7O2—N3—C14119.0 (2)
C6—C7—H7A109.7O1—N3—C14119.12 (18)
C8—C7—H7B109.7C1—S1—C891.95 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.483.093 (3)129
C11—H11···O1ii0.932.563.351 (3)143

Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2704).

References

  • Baraldi, P. G., Pavani, M. G., Leung, E., Moorman, A. R., Varani, K., Vicenzi, F., Borea, P. A. & Romagnoli, R. (2006). Bioorg. Med. Chem. Lett.16, 1402–1404. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Fakhr, I. M. I., Radwan, M. A. A., El-Batran, S., El-Salam, O. M. E. A. & El-Shenawy, S. M. (2008). Eur. J. Med. Chem.44, 1718–1725. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber.99, 99–100.
  • Nonius (1997). KappaCCD Server Software for Windows Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Puterová, Z., Krutosiková, A. & Végh, D. (2009). Nova Biotech.9, 167–173.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography