PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2683.
Published online 2010 September 30. doi:  10.1107/S1600536810038316
PMCID: PMC2983392

1,2,4,5-Tetra­fluoro-3,6-diiodo­benzene–4-(pyridin-4-ylsulfan­yl)pyridine (1/1)

Abstract

The asymmetric unit of the title 1:1 adduct, C10H8N2S·C6F4I2, comprises a half-mol­ecule of 1,2,4,5-tetra­fluoro-3,6-diiodo­benzene, and half a 4-(pyridin-4-ylsulfan­yl)pyridine mol­ecule. The former is completed by crystallographic inversion symmetry, the latter by twofold symmetry, with the S atom lying on the rotation axis. The almost planar 1,2,4,5-tetra­fluoro-3,6-diiodo­benzene mol­ecule (r.m.s. deviation of all 12 atoms = 0.016 Å) and twisted 4-(pyridin-4-ylsulfan­yl)pyridine mol­ecule [dihedral angle between pyridyl rings = 54.88 (13)°] are connected by N(...)I inter­actions [2.838 (4) Å], generating a supra­molecular chain with a step-ladder topology. These chains are connected in the crystal by C—H(...)F and C—H(...)π(pyrid­yl) inter­actions.

Related literature

For related studies on co-crystal formation, see: Broker et al. (2008 [triangle]); Arman et al. (2010 [triangle]). For background to halogen bonding, see: Metrangolo et al. (2008 [triangle]); Pennington et al. (2008 [triangle]). For the desulfurization of 4-(pyridin-4-yldisulfan­yl)pyridine, see: Aragoni et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2683-scheme1.jpg

Experimental

Crystal data

  • C10H8N2S·C6F4I2
  • M r = 590.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2683-efi1.jpg
  • a = 13.804 (5) Å
  • b = 5.829 (2) Å
  • c = 22.164 (8) Å
  • β = 97.989 (7)°
  • V = 1766.1 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.72 mm−1
  • T = 98 K
  • 0.30 × 0.20 × 0.05 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.757, T max = 1.000
  • 5209 measured reflections
  • 1823 independent reflections
  • 1733 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.073
  • S = 1.07
  • 1823 reflections
  • 114 parameters
  • H-atom parameters constrained
  • Δρmax = 1.34 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038316/hb5647sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038316/hb5647Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a continuation of studies into the phenomenon of co-crystallization (Broker et al., 2008; Arman et al., 2010), including investigations of halogen bonding (Pennington et al., 2008), the co-crystallization of 1,2,4,5-tetrafluoro-3,6-diiodobenzene and 4-(pyridin-4-yldisulfanyl)pyridine was investigated. This lead to the isolation of the title 1/1 co-crystal, (I), in which desulfurization of 4-(pyridin-4-yldisulfanyl)pyridine has occurred, a process that has literature precedents (Aragoni et al., 2007).

The asymmetric unit in (I) comprises half a molecule of 1,2,4,5-tetrafluoro-3,6-diiodobenzene as this is situated about a centre of inversion, Fig. 1, and half a molecule of 4-(pyridin-4-ylsulfanyl)pyridine, Fig. 2, with the S atom lying on a 2-fold axis. The C6F4I2 molecule is planar with the r.m.s. deviation of all 12 atoms being 0.016 Å. The pyridyl rings in 4-(pyridin-4-ylsulfanyl)pyridine are twisted and form a dihedral angle of 54.88 (13) °.

The components of the co-crystal are connected via N···I interactions [2.838 (4) Å] to form a supramolecular chain with a step-ladder topology and with a base vector 2 0 1, Fig. 3. The chains are consolidated in the crystal packing by C—H···F and C—H···π(pyridyl) interactions, Table 1 and Fig. 4. The N···I interactions observed in (I) represents a further example of N···I—C halogen bonding (Metrangolo et al., 2008).

Experimental

Initially 1,2,4,5-tetrafluoro-3,6-diiodobenzene (Aldrich, 0.04 mmol) and 4-(pyridin-4-yldisulfanyl)pyridine (Aldrich, 0.04 mmol) were dissolved in a THF/acetone (1/1) mixture and after evaporation of the solvent, the powder was then dissolved in ethanol. Again, crystals did not form so the powder was dissolved in a CHCl3/acetone (1/1) mixture. Slow evaporation of this solution deposited yellow blocks of (I) which, after crystallographic characterization, was proven to contain 4-(pyridin-4-ylsulfanyl)pyridine, indicating that desulfurization of 4-(pyridin-4-yldisulfanyl)pyridine had occurred (Aragoni et al., 2007). M. pt:. 423–427 K. IR assignment (cm-1): 757 (m, sh); 807 (s, sh); 939 (s, sh); 1065 (s, sh); 1208 (m, sh) (C—F); 1408 (m, sh), 1456 (s, sh) C—C (aromatic); 1570 (s, sh) C═N; 2924 (s) C—H.

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.34 and 0.63 e Å-3, respectively, were located 1.06 Å and 0.88 Å from the S1 and I1 atoms, respectively.

Figures

Fig. 1.
Molecular structure of 1,2,4,5-tetrafluoro-3,6-diiodobenzene found in the structure of (I) showing displacement ellipsoids at the 50% probability level. Unlabelled atoms are related across a centre of inversion.
Fig. 2.
Molecular structure of 4-(pyridin-4-yldisulfanyl)pyridine found in the structure of (I) showing displacement ellipsoids at the 50% probability level. Unlabelled atoms are related across a 2-fold axis.
Fig. 3.
The supramolecular chain in (I) sustained by N···I halogen bonds, shown as orange dashed lines.
Fig. 4.
A view in projection down the b axis showing the stacking of alternating layers of 1,2,4,5-tetrafluoro-3,6-diiodobenzene and 4-(pyridin-4-yldisulfanyl)pyridine molecules along the c axis. The N···I, C—H···F ...

Crystal data

C10H8N2S·C6F4I2F(000) = 1104
Mr = 590.10Dx = 2.219 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3043 reflections
a = 13.804 (5) Åθ = 3.0–40.2°
b = 5.829 (2) ŵ = 3.72 mm1
c = 22.164 (8) ÅT = 98 K
β = 97.989 (7)°Block, yellow
V = 1766.1 (11) Å30.30 × 0.20 × 0.05 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer1823 independent reflections
Radiation source: fine-focus sealed tube1733 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −17→14
Tmin = 0.757, Tmax = 1.000k = −5→7
5209 measured reflectionsl = −27→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0202P)2 + 21.2619P] where P = (Fo2 + 2Fc2)/3
1823 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = −0.63 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.33988 (2)0.75767 (5)0.089898 (12)0.02060 (11)
F10.4107 (2)0.9003 (5)−0.03751 (12)0.0253 (6)
F20.5292 (2)0.6993 (5)−0.10663 (12)0.0257 (6)
C10.4356 (3)0.6036 (8)0.0360 (2)0.0186 (9)
C20.4540 (3)0.6999 (7)−0.0181 (2)0.0180 (9)
C30.5168 (3)0.5980 (8)−0.0534 (2)0.0205 (9)
S10.00000.4266 (3)0.25000.0201 (3)
N10.2103 (3)−0.0202 (7)0.15987 (18)0.0248 (9)
C40.1787 (3)0.1842 (9)0.1379 (2)0.0239 (10)
H40.20320.24040.10280.029*
C50.1121 (3)0.3192 (8)0.1635 (2)0.0215 (9)
H50.09050.46160.14550.026*
C60.0779 (3)0.2417 (8)0.2158 (2)0.0191 (9)
C70.1112 (3)0.0326 (8)0.2401 (2)0.0193 (9)
H70.0900−0.02420.27630.023*
C80.1762 (3)−0.0926 (8)0.2104 (2)0.0203 (9)
H80.1977−0.23730.22680.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.01922 (17)0.02358 (17)0.01968 (17)0.00034 (12)0.00505 (11)−0.00148 (11)
F10.0271 (15)0.0212 (14)0.0285 (15)0.0061 (12)0.0072 (12)0.0045 (11)
F20.0288 (16)0.0283 (14)0.0218 (14)0.0026 (12)0.0099 (11)0.0084 (11)
C10.013 (2)0.023 (2)0.020 (2)−0.0024 (17)0.0021 (16)−0.0062 (17)
C20.015 (2)0.017 (2)0.021 (2)−0.0005 (17)−0.0009 (16)0.0016 (16)
C30.021 (2)0.023 (2)0.018 (2)−0.0036 (19)0.0029 (17)0.0006 (17)
S10.0203 (8)0.0166 (7)0.0245 (8)0.0000.0068 (6)0.000
N10.020 (2)0.026 (2)0.028 (2)0.0012 (17)0.0057 (16)−0.0018 (17)
C40.017 (2)0.031 (3)0.023 (2)−0.0047 (19)0.0040 (18)0.0002 (19)
C50.022 (2)0.020 (2)0.022 (2)−0.0007 (18)0.0005 (18)0.0007 (17)
C60.015 (2)0.020 (2)0.023 (2)−0.0012 (17)0.0041 (17)−0.0043 (17)
C70.014 (2)0.019 (2)0.024 (2)−0.0025 (17)0.0003 (17)−0.0017 (17)
C80.016 (2)0.018 (2)0.026 (2)−0.0010 (17)−0.0013 (17)−0.0009 (17)

Geometric parameters (Å, °)

I1—C12.101 (4)N1—C41.337 (6)
F1—C21.355 (5)C4—C51.389 (7)
F2—C31.352 (5)C4—H40.9500
C1—C21.379 (6)C5—C61.387 (6)
C1—C3i1.375 (6)C5—H50.9500
C2—C31.381 (6)C6—C71.385 (6)
C3—C1i1.375 (6)C7—C81.392 (6)
S1—C6ii1.766 (4)C7—H70.9500
S1—C61.766 (4)C8—H80.9500
N1—C81.342 (6)
C2—C1—C3i116.9 (4)C5—C4—H4118.0
C2—C1—I1121.8 (3)C6—C5—C4118.5 (4)
C3i—C1—I1121.3 (3)C6—C5—H5120.7
C1—C2—F1120.0 (4)C4—C5—H5120.7
C1—C2—C3121.6 (4)C7—C6—C5118.6 (4)
F1—C2—C3118.4 (4)C7—C6—S1124.0 (4)
F2—C3—C1i120.3 (4)C5—C6—S1117.3 (3)
F2—C3—C2118.2 (4)C6—C7—C8118.6 (4)
C1i—C3—C2121.5 (4)C6—C7—H7120.7
C6ii—S1—C6104.8 (3)C8—C7—H7120.7
C8—N1—C4116.7 (4)N1—C8—C7123.7 (4)
N1—C4—C5123.9 (4)N1—C8—H8118.2
N1—C4—H4118.0C7—C8—H8118.2
C3i—C1—C2—F1−179.1 (4)N1—C4—C5—C61.7 (7)
I1—C1—C2—F10.6 (6)C4—C5—C6—C7−0.3 (7)
C3i—C1—C2—C30.4 (7)C4—C5—C6—S1175.7 (4)
I1—C1—C2—C3−179.9 (3)C6ii—S1—C6—C7−34.9 (3)
C1—C2—C3—F2178.2 (4)C6ii—S1—C6—C5149.3 (4)
F1—C2—C3—F2−2.3 (6)C5—C6—C7—C8−1.1 (6)
C1—C2—C3—C1i−0.4 (8)S1—C6—C7—C8−176.8 (3)
F1—C2—C3—C1i179.0 (4)C4—N1—C8—C70.0 (7)
C8—N1—C4—C5−1.5 (7)C6—C7—C8—N11.3 (7)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C4–C8 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···F1iii0.952.523.213 (5)130
C8—H8···Cg1iv0.952.823.557 (5)135

Symmetry codes: (iii) −x+1/2, −y+3/2, −z; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5647).

References

  • Aragoni, M. C., Arca, M., Crespo, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Verani, G. (2007). CrystEngComm, 9, 873–878.
  • Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2356. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond.126, 105–136.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Pennington, W. T., Hanks, T. W. & Arman, H. D. (2008). Struct. Bond.126, 65–104.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography