PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1212.
Published online 2010 September 4. doi:  10.1107/S1600536810035348
PMCID: PMC2983389

catena-Poly[[[(2-pyridone-κO)silver(I)]-μ-2-pyridone-κ2 O:O] hexa­fluorido­phosphate]

Abstract

The asymmetric unit of the polymeric title salt, {[Ag(C5H5NO)2]PF6}n, comprises an AgI cation (located on a twofold axis), two 2-pyridone ligands (with distinct coordination modes), and half a PF6 anion (situated on a centre of inversion). The AgI atom is in an approximately octa­hedral AgO6 coordination geometry, which is stabilized by intra­molecular N—H(...)O hydrogen bonds. The result of the bridging mode of the 2-pyridone ligand is the formation of a supra­molecular chain along the c axis; these are consolidated in the crystal by C—H(...)F inter­actions.

Related literature

For structural diversity in the supra­molecular structures of silver salts, see: Kundu et al. (2010 [triangle]). For a related Ag structure, see: Arman et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1212-scheme1.jpg

Experimental

Crystal data

  • [Ag(C5H5NO)2]PF6
  • M r = 633.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1212-efi1.jpg
  • a = 13.519 (5) Å
  • b = 24.187 (9) Å
  • c = 7.301 (3) Å
  • β = 96.918 (5)°
  • V = 2369.9 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.00 mm−1
  • T = 293 K
  • 0.48 × 0.40 × 0.14 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.535, T max = 1.000
  • 8382 measured reflections
  • 2703 independent reflections
  • 2573 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.080
  • S = 1.14
  • 2703 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.78 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035348/hb5626sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035348/hb5626Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The structural diversity in the supramolecular structures of silver salts is well documented (Kundu et al., 2010). The title compound, (I), was was isolated and characterized as a continuation of recent structural studies of such structures (Arman et al., 2010).

The crystallographic asymmetric unit of (I) comprises half a Ag cation, situated on a crystallographic 2-fold axis, a monodentate 2-pyridone ligand, coordinating via the carbonyl-O atom, a bidentate 2-pyridone ligand, bridging two Ag cations via a carbonyl-O atom, and half a PF6- anion, situated about a crystallographic centre of inversion, Fig. 1. The resulting AgI atom coordination geomerty is based on a distorted octahedron defined by an O6 donor set, with the Ag—O bond distances lying in the range 2.3543 (19) to 2.6278 (19) Å, Table 1. The coordination geometry is stabilized by intramolecular N—H···O hydrogen bonds, Table 2. As the carbonyl-O2 atom is bidentate bridging, a supramolecular chain along the c axis is generated, Fig. 2. The chains are consolidated in the 3-D structure by C—H···F interactions, Fig. 3.

Experimental

The title salt, (I), was isolated as colourless blocks from the 1:2 reaction of silver hexafluorophosphate (Aldrich) and 2-hydroxypyridine (Aldrich) in methanol solution; m. pt 393–399 K.

Refinement

The H-atoms were placed in calculated positions (N—H = 0.86 Å and C—H = 0.93 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(carrier atom).

Figures

Fig. 1.
Asymmetric unit in the structure of (I) showing displacement ellipsoids at the 50% probability level. The Ag (lying on a 2-fold axis of symmetry) and P (lying on a centre of inversion) atom environments have been expanded to show the respective coordination ...
Fig. 2.
Portion of the supramolecular chain aligned along the c axis in (I).
Fig. 3.
A view in projection down the c axis of the crystal packing in (I), emphasizing the Ag octahedra and interspersing of the PF6- anions.

Crystal data

[Ag(C5H5NO)2]PF6F(000) = 1264
Mr = 633.24Dx = 1.775 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 4745 reflections
a = 13.519 (5) Åθ = 3.1–40.6°
b = 24.187 (9) ŵ = 1.00 mm1
c = 7.301 (3) ÅT = 293 K
β = 96.918 (5)°Block, colourless
V = 2369.9 (16) Å30.48 × 0.40 × 0.14 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer2703 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −14→17
Tmin = 0.535, Tmax = 1.000k = −30→31
8382 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.036P)2 + 3.3853P] where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag0.00000.00000.00000.02327 (9)
P1−0.50000.14921 (3)0.25000.02229 (17)
O10.00398 (11)0.09711 (7)−0.0200 (2)0.0243 (3)
N1−0.13089 (13)0.11598 (7)0.1275 (2)0.0206 (3)
H1−0.13780.08110.14570.025*
F1−0.52808 (12)0.14954 (6)0.4566 (2)0.0349 (3)
O2−0.13415 (13)0.00438 (6)0.2083 (2)0.0239 (3)
C6−0.19943 (16)−0.03274 (9)0.2224 (3)0.0214 (4)
N2−0.18133 (13)−0.08533 (7)0.1662 (2)0.0223 (4)
H2−0.1265−0.09160.12100.027*
C1−0.05410 (15)0.13279 (8)0.0342 (3)0.0195 (4)
F2−0.58219 (11)0.19640 (6)0.1951 (2)0.0340 (3)
F3−0.58231 (11)0.10246 (6)0.1955 (2)0.0356 (3)
C5−0.19677 (17)0.15108 (9)0.1932 (3)0.0240 (4)
H5−0.24780.13710.25440.029*
C10−0.24535 (18)−0.12841 (9)0.1781 (3)0.0261 (4)
H10−0.2291−0.16320.13690.031*
C2−0.04687 (17)0.19098 (9)0.0059 (3)0.0237 (4)
H2A0.00280.2048−0.05910.028*
C3−0.11206 (18)0.22646 (9)0.0732 (3)0.0279 (5)
H3−0.10590.26430.05480.033*
C7−0.29123 (17)−0.02432 (10)0.2950 (3)0.0263 (5)
H7−0.30800.01080.33330.032*
C9−0.33255 (17)−0.12096 (10)0.2493 (3)0.0293 (5)
H9−0.3762−0.15030.25850.035*
C4−0.18849 (18)0.20657 (9)0.1700 (3)0.0283 (5)
H4−0.23240.23080.21710.034*
C8−0.35494 (17)−0.06760 (11)0.3087 (3)0.0296 (5)
H8−0.4142−0.06160.35840.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag0.02195 (14)0.01698 (14)0.03202 (15)0.00192 (7)0.00785 (10)0.00250 (8)
P10.0220 (4)0.0201 (4)0.0267 (4)0.0000.0106 (3)0.000
O10.0232 (8)0.0203 (8)0.0304 (8)0.0016 (5)0.0076 (6)0.0000 (6)
N10.0225 (8)0.0173 (8)0.0225 (8)0.0008 (6)0.0045 (7)0.0029 (7)
F10.0418 (8)0.0363 (8)0.0298 (7)0.0041 (7)0.0174 (6)0.0042 (6)
O20.0225 (8)0.0191 (8)0.0308 (9)−0.0005 (5)0.0063 (7)0.0036 (6)
C60.0217 (10)0.0204 (10)0.0220 (10)0.0003 (8)0.0023 (8)0.0040 (8)
N20.0218 (8)0.0215 (9)0.0244 (9)−0.0021 (7)0.0062 (7)0.0015 (7)
C10.0198 (9)0.0201 (10)0.0186 (9)−0.0001 (7)0.0019 (7)0.0017 (7)
F20.0328 (8)0.0300 (7)0.0408 (8)0.0092 (6)0.0106 (6)0.0067 (6)
F30.0307 (7)0.0292 (7)0.0480 (9)−0.0084 (6)0.0086 (6)−0.0009 (6)
C50.0239 (10)0.0258 (11)0.0228 (10)0.0027 (8)0.0055 (8)0.0020 (8)
C100.0327 (11)0.0213 (10)0.0245 (10)−0.0065 (9)0.0043 (9)0.0013 (8)
C20.0277 (11)0.0197 (10)0.0239 (10)−0.0026 (8)0.0039 (8)0.0021 (8)
C30.0364 (12)0.0165 (10)0.0311 (11)0.0019 (9)0.0056 (10)0.0018 (8)
C70.0234 (10)0.0283 (12)0.0278 (11)0.0032 (8)0.0048 (9)0.0021 (9)
C90.0272 (11)0.0320 (12)0.0286 (11)−0.0115 (9)0.0025 (9)0.0052 (9)
C40.0316 (12)0.0234 (11)0.0312 (11)0.0070 (9)0.0092 (9)−0.0008 (9)
C80.0208 (10)0.0406 (14)0.0278 (11)−0.0022 (9)0.0042 (9)0.0049 (10)

Geometric parameters (Å, °)

Ag—O1i2.3543 (19)C6—C71.422 (3)
Ag—O12.3543 (19)N2—C101.364 (3)
Ag—O2i2.5055 (18)N2—H20.8600
Ag—O22.5055 (18)C1—C21.427 (3)
Ag—O2ii2.6278 (19)C5—C41.359 (3)
Ag—O2iii2.6278 (19)C5—H50.9300
P1—F11.5993 (15)C10—C91.356 (3)
P1—F1iv1.5993 (15)C10—H100.9300
P1—F3iv1.6026 (15)C2—C31.363 (3)
P1—F31.6026 (15)C2—H2A0.9300
P1—F2iv1.6095 (15)C3—C41.405 (3)
P1—F21.6095 (15)C3—H30.9300
O1—C11.262 (3)C7—C81.367 (3)
N1—C51.359 (3)C7—H70.9300
N1—C11.370 (3)C9—C81.406 (4)
N1—H10.8600C9—H90.9300
O2—C61.272 (3)C4—H40.9300
C6—N21.368 (3)C8—H80.9300
O1—Ag—O1i180C6—O2—Ag125.40 (14)
O1—Ag—O291.09 (5)O2—C6—N2118.79 (19)
O1—Ag—O2i88.91 (5)O2—C6—C7125.1 (2)
O1—Ag—O2ii89.50 (5)N2—C6—C7116.14 (19)
O1—Ag—O2iii90.50 (5)C10—N2—C6123.64 (19)
O1i—Ag—O288.91 (5)C10—N2—H2118.2
O1i—Ag—O2i91.09 (5)C6—N2—H2118.2
O1i—Ag—O2ii90.50 (5)O1—C1—N1119.33 (19)
O1i—Ag—O2iii89.50 (5)O1—C1—C2124.96 (19)
O2—Ag—O2i180N1—C1—C2115.70 (18)
O2—Ag—O2ii89.18 (5)N1—C5—C4120.4 (2)
O2—Ag—O2iii90.82 (5)N1—C5—H5119.8
O2i—Ag—O2ii90.82 (5)C4—C5—H5119.8
O2i—Ag—O2iii89.18 (5)C9—C10—N2120.7 (2)
O2ii—Ag—O2iii180C9—C10—H10119.7
F1—P1—F1iv179.43 (13)N2—C10—H10119.7
F1—P1—F3iv90.33 (8)C3—C2—C1120.7 (2)
F1iv—P1—F3iv90.07 (8)C3—C2—H2A119.7
F1—P1—F390.07 (8)C1—C2—H2A119.7
F1iv—P1—F390.33 (8)C2—C3—C4120.8 (2)
F3iv—P1—F390.26 (12)C2—C3—H3119.6
F1—P1—F2iv89.82 (8)C4—C3—H3119.6
F1iv—P1—F2iv89.78 (8)C8—C7—C6120.3 (2)
F3iv—P1—F2iv90.03 (8)C8—C7—H7119.9
F3—P1—F2iv179.68 (9)C6—C7—H7119.9
F1—P1—F289.78 (8)C10—C9—C8118.0 (2)
F1iv—P1—F289.82 (8)C10—C9—H9121.0
F3iv—P1—F2179.69 (9)C8—C9—H9121.0
F3—P1—F290.03 (8)C5—C4—C3118.5 (2)
F2iv—P1—F289.67 (12)C5—C4—H4120.7
C1—O1—Ag130.04 (14)C3—C4—H4120.7
C5—N1—C1123.91 (18)C7—C8—C9121.3 (2)
C5—N1—H1118.0C7—C8—H8119.4
C1—N1—H1118.0C9—C8—H8119.4
O2i—Ag—O1—C1170.23 (18)C1—N1—C5—C4−0.7 (3)
O2—Ag—O1—C1−9.77 (18)C6—N2—C10—C9−0.4 (3)
O1i—Ag—O2—C6−28.01 (17)O1—C1—C2—C3−178.6 (2)
O1—Ag—O2—C6151.99 (17)N1—C1—C2—C31.5 (3)
Ag—O2—C6—N220.6 (3)C1—C2—C3—C4−0.7 (4)
Ag—O2—C6—C7−160.21 (16)O2—C6—C7—C8−178.1 (2)
O2—C6—N2—C10178.9 (2)N2—C6—C7—C81.1 (3)
C7—C6—N2—C10−0.4 (3)N2—C10—C9—C80.5 (3)
Ag—O1—C1—N13.3 (3)N1—C5—C4—C31.5 (3)
Ag—O1—C1—C2−176.67 (15)C2—C3—C4—C5−0.8 (4)
C5—N1—C1—O1179.28 (19)C6—C7—C8—C9−1.1 (4)
C5—N1—C1—C2−0.8 (3)C10—C9—C8—C70.2 (4)

Symmetry codes: (i) −x, −y, −z; (ii) −x, y, −z+1/2; (iii) x, −y, z−1/2; (iv) −x−1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.912.765 (2)171
N2—H2···O1v0.861.902.754 (3)174
C3—H3···F1vi0.932.483.353 (3)157
C5—H5···F3iv0.932.513.398 (3)159

Symmetry codes: (v) −x, −y, −z; (vi) x+1/2, −y+1/2, z−1/2; (iv) −x−1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5626).

References

  • Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167–m1168. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des.10, 1269–1282.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography