PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2506.
Published online 2010 September 4. doi:  10.1107/S1600536810034707
PMCID: PMC2983385

1-Benzyl-3-(1,2-diphenyl­ethen­yl)-1H-indole

Abstract

In the title compound, C29H23N, the planar [maximum deviation from the least squares plane = 0.056 (1) Å] indole ring makes dihedral angles of 83.4 (4), 69.9 (1) and 59.9 (1)°, with the least-squares planes of three benzene rings. The mol­ecular packing is stabilized by weak inter­molecular C—H(...)π inter­actions.

Related literature

For applications of heteroarenes, see: Dyker (1999 [triangle]); Ritleng et al. (2002 [triangle]). For their pharmaceutical properties and for related reactions, see: Sundberg (1996 [triangle]); Ferrer et al. 2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2506-scheme1.jpg

Experimental

Crystal data

  • C29H23N
  • M r = 385.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2506-efi1.jpg
  • a = 9.6513 (7) Å
  • b = 11.1857 (10) Å
  • c = 20.0026 (14) Å
  • β = 101.636 (4)°
  • V = 2115.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 K
  • 0.22 × 0.19 × 0.16 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.985, T max = 0.989
  • 14333 measured reflections
  • 4736 independent reflections
  • 1944 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.164
  • S = 0.96
  • 4736 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle])’.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034707/jj2051sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034707/jj2051Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MNM thanks the Management of The New College (Autonomous), Chennai, India, for providing the necessary facilities.

supplementary crystallographic information

Comment

Development of heteroarene functionalization are useful applications such as fluorescent dyes, synthetic analogues of natural products, and pharmaceuticals (Ritleng et al., 2002; Dyker, 1999). The indole ring system exists ubiquitously in natural products, and exhibits important biological and pharmaceutical properties (Sundberg et al., 1996). A systematic investigation on the gold-catalyzed intra- and intermolecular addition of indoles to alkynes is reported (Ferrer et al., 2007). Against this background the structure of the title compound, C29H23N, is determined.

In the title compound, the indole ring is planar, the maximum deviation from the least squares plane being 0.056 (1)Å for atom C3 (Fig. 1). All bond lengths and angles are within normal ranges (Allen et al., 1987). The sum of bond angles around N1 is 350.8 (2)°, indicating sp2 hybridization. The dihedral angle formed by the least squares planes of the indole ring and the three benzene rings is 83.4 (4)° (C10—C15), 69.9 (0)° (C17–C21) and 59.9 (0)° (C24–C29), respectively. The dihedral angle between benzene rings C10—C15 vs C17–C21 and rings C10—C15 vs C24–C29 is 36.7 (6)°. The molecular packing is stabilized by weak intermolecular C—H···Cg π-ring interactions (Table 1).

Experimental

A mixture of diphenylacetylene (2.4 mmol),1-benzyl indole (2 mmol), indium tribromide (0.2 mmol) in toluene (4 ml) was stirred at 383° K for 2 hr. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na2SO4, concentrated in vacuo and purified by column chromatography on silica gel (Merck,100–200 mesh) to afford the desired product after crystallization.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, C29H23N, with the atom numbering scheme and 50% probability displacement ellipsoids. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C29H23NF(000) = 816
Mr = 385.48Dx = 1.211 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1467 reflections
a = 9.6513 (7) Åθ = 2.6–20.8°
b = 11.1857 (10) ŵ = 0.07 mm1
c = 20.0026 (14) ÅT = 298 K
β = 101.636 (4)°Block, colourless
V = 2115.0 (3) Å30.22 × 0.19 × 0.16 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer4736 independent reflections
Radiation source: fine-focus sealed tube1944 reflections with I > 2σ(I)
graphiteRint = 0.057
ω and [var phi] scanθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −12→11
Tmin = 0.985, Tmax = 0.989k = −13→13
14333 measured reflectionsl = −25→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 0.96w = 1/[σ2(Fo2) + (0.069P)2] where P = (Fo2 + 2Fc2)/3
4736 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8730 (2)0.1329 (2)0.39886 (12)0.0542 (7)
H10.90180.12470.35740.065*
C20.7345 (2)0.1302 (2)0.40656 (12)0.0491 (6)
C30.7395 (2)0.1442 (2)0.47796 (11)0.0491 (6)
C40.6392 (3)0.1373 (3)0.51975 (13)0.0663 (8)
H40.54400.12600.50060.080*
C50.6829 (3)0.1474 (3)0.58865 (14)0.0832 (9)
H50.61590.14370.61610.100*
C60.8239 (3)0.1629 (3)0.61903 (14)0.0806 (9)
H60.84940.17120.66620.097*
C70.9262 (3)0.1662 (2)0.58053 (13)0.0659 (8)
H71.02130.17470.60060.079*
C80.8821 (2)0.1563 (2)0.51037 (12)0.0503 (6)
C91.1159 (2)0.1514 (2)0.47240 (13)0.0592 (7)
H9A1.14580.12220.43190.071*
H9B1.15240.09670.50940.071*
C101.1807 (2)0.2726 (2)0.49003 (12)0.0499 (6)
C111.3105 (2)0.2806 (3)0.53319 (12)0.0631 (7)
H111.35310.21210.55430.076*
C121.3780 (3)0.3894 (4)0.54542 (16)0.0867 (10)
H121.46640.39360.57420.104*
C131.3161 (4)0.4907 (3)0.51563 (19)0.0918 (11)
H131.36220.56390.52400.110*
C141.1867 (4)0.4845 (3)0.47361 (18)0.0918 (10)
H141.14350.55350.45350.110*
C151.1194 (3)0.3754 (3)0.46090 (15)0.0755 (8)
H151.03100.37180.43200.091*
C160.6105 (2)0.1190 (2)0.35057 (11)0.0515 (6)
C170.6344 (2)0.0550 (2)0.28908 (11)0.0484 (6)
C180.7060 (2)−0.0527 (3)0.29393 (13)0.0628 (7)
H180.7317−0.08920.33640.075*
C190.7404 (3)−0.1075 (3)0.23813 (16)0.0745 (8)
H190.7883−0.18010.24290.089*
C200.7036 (3)−0.0545 (3)0.17518 (16)0.0785 (9)
H200.7278−0.09050.13720.094*
C210.6326 (3)0.0498 (3)0.16852 (13)0.0719 (8)
H210.60790.08550.12580.086*
C220.5959 (3)0.1044 (3)0.22447 (13)0.0640 (7)
H220.54460.17530.21870.077*
C230.4864 (2)0.1698 (2)0.35701 (13)0.0618 (7)
H230.49190.21610.39610.074*
C240.3455 (2)0.1647 (3)0.31340 (12)0.0562 (7)
C250.2926 (3)0.0713 (3)0.27103 (15)0.0827 (9)
H250.35140.00710.26680.099*
C260.1547 (3)0.0700 (3)0.23466 (16)0.0942 (11)
H260.12170.00560.20650.113*
C270.0660 (3)0.1649 (4)0.24024 (17)0.0891 (10)
H27−0.02640.16600.21520.107*
C280.1159 (3)0.2566 (3)0.28288 (16)0.0820 (9)
H280.05650.32010.28760.098*
C290.2521 (3)0.2569 (3)0.31884 (13)0.0702 (8)
H290.28320.32070.34780.084*
N10.96186 (19)0.14922 (18)0.46014 (10)0.0531 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0569 (15)0.0496 (18)0.0525 (15)0.0052 (13)0.0023 (12)0.0001 (12)
C20.0393 (13)0.0439 (17)0.0594 (15)0.0035 (11)−0.0009 (11)0.0010 (12)
C30.0490 (14)0.0434 (17)0.0524 (15)0.0013 (12)0.0046 (11)−0.0014 (12)
C40.0513 (15)0.077 (2)0.0687 (19)−0.0006 (14)0.0067 (14)−0.0074 (15)
C50.077 (2)0.109 (3)0.0635 (19)−0.0081 (19)0.0151 (16)−0.0050 (18)
C60.088 (2)0.094 (3)0.0565 (17)−0.0118 (19)0.0061 (17)−0.0085 (16)
C70.0630 (17)0.062 (2)0.0637 (18)−0.0053 (14)−0.0086 (14)−0.0053 (14)
C80.0466 (14)0.0391 (17)0.0623 (16)−0.0009 (12)0.0038 (12)−0.0002 (12)
C90.0430 (14)0.0535 (19)0.0767 (17)0.0046 (13)0.0018 (12)−0.0007 (14)
C100.0411 (14)0.0489 (19)0.0594 (15)0.0035 (13)0.0096 (12)0.0018 (13)
C110.0459 (15)0.070 (2)0.0721 (17)−0.0049 (14)0.0088 (13)0.0033 (15)
C120.0548 (18)0.106 (3)0.097 (2)−0.029 (2)0.0089 (16)−0.010 (2)
C130.092 (3)0.072 (3)0.122 (3)−0.030 (2)0.047 (2)−0.017 (2)
C140.092 (2)0.054 (2)0.130 (3)−0.001 (2)0.025 (2)0.009 (2)
C150.0668 (18)0.057 (2)0.096 (2)0.0027 (17)−0.0005 (16)0.0042 (18)
C160.0485 (14)0.0480 (17)0.0537 (15)0.0026 (13)0.0001 (11)0.0043 (13)
C170.0416 (13)0.0454 (17)0.0522 (15)−0.0009 (12)−0.0047 (11)0.0038 (13)
C180.0595 (16)0.058 (2)0.0643 (17)0.0064 (15)−0.0043 (13)−0.0011 (15)
C190.0684 (18)0.059 (2)0.089 (2)0.0113 (15)−0.0013 (17)−0.0144 (19)
C200.078 (2)0.079 (3)0.077 (2)−0.0152 (19)0.0120 (16)−0.026 (2)
C210.092 (2)0.065 (2)0.0541 (18)−0.0093 (18)0.0034 (15)0.0006 (16)
C220.0698 (17)0.0533 (19)0.0616 (18)−0.0034 (14)−0.0040 (14)−0.0019 (14)
C230.0535 (16)0.066 (2)0.0613 (16)0.0058 (14)0.0001 (12)−0.0008 (13)
C240.0477 (14)0.060 (2)0.0586 (15)0.0095 (14)0.0051 (12)0.0085 (14)
C250.0544 (17)0.083 (3)0.102 (2)0.0073 (16)−0.0058 (16)−0.0126 (19)
C260.0613 (19)0.097 (3)0.113 (3)0.000 (2)−0.0087 (18)−0.013 (2)
C270.0467 (17)0.122 (3)0.092 (2)0.012 (2)−0.0033 (16)0.021 (2)
C280.057 (2)0.090 (3)0.097 (2)0.0196 (18)0.0126 (17)0.012 (2)
C290.0536 (17)0.078 (2)0.0779 (18)0.0092 (16)0.0114 (14)0.0061 (16)
N10.0412 (11)0.0516 (15)0.0620 (13)−0.0013 (10)0.0001 (10)−0.0011 (10)

Geometric parameters (Å, °)

C1—N11.359 (3)C14—H140.9300
C1—C21.377 (3)C15—H150.9300
C1—H10.9300C16—C231.355 (3)
C2—C31.428 (3)C16—C171.481 (3)
C2—C161.470 (3)C17—C181.382 (3)
C3—C41.403 (3)C17—C221.386 (3)
C3—C81.405 (3)C18—C191.372 (3)
C4—C51.362 (3)C18—H180.9300
C4—H40.9300C19—C201.372 (4)
C5—C61.385 (4)C19—H190.9300
C5—H50.9300C20—C211.345 (4)
C6—C71.370 (3)C20—H200.9300
C6—H60.9300C21—C221.383 (4)
C7—C81.386 (3)C21—H210.9300
C7—H70.9300C22—H220.9300
C8—N11.386 (3)C23—C241.461 (3)
C9—N11.457 (3)C23—H230.9300
C9—C101.505 (3)C24—C251.377 (4)
C9—H9A0.9700C24—C291.389 (3)
C9—H9B0.9700C25—C261.382 (3)
C10—C151.369 (4)C25—H250.9300
C10—C111.373 (3)C26—C271.383 (4)
C11—C121.379 (4)C26—H260.9300
C11—H110.9300C27—C281.359 (4)
C12—C131.361 (4)C27—H270.9300
C12—H120.9300C28—C291.365 (3)
C13—C141.359 (4)C28—H280.9300
C13—H130.9300C29—H290.9300
C14—C151.381 (4)
N1—C1—C2110.6 (2)C14—C15—H15119.4
N1—C1—H1124.7C23—C16—C2119.4 (2)
C2—C1—H1124.7C23—C16—C17124.8 (2)
C1—C2—C3105.7 (2)C2—C16—C17115.79 (19)
C1—C2—C16125.2 (2)C18—C17—C22116.7 (2)
C3—C2—C16129.0 (2)C18—C17—C16121.5 (2)
C4—C3—C8117.4 (2)C22—C17—C16121.6 (2)
C4—C3—C2134.5 (2)C19—C18—C17122.1 (3)
C8—C3—C2107.75 (19)C19—C18—H18118.9
C5—C4—C3119.2 (2)C17—C18—H18118.9
C5—C4—H4120.4C18—C19—C20119.6 (3)
C3—C4—H4120.4C18—C19—H19120.2
C4—C5—C6122.0 (3)C20—C19—H19120.2
C4—C5—H5119.0C21—C20—C19119.8 (3)
C6—C5—H5119.0C21—C20—H20120.1
C7—C6—C5120.9 (3)C19—C20—H20120.1
C7—C6—H6119.6C20—C21—C22120.8 (3)
C5—C6—H6119.6C20—C21—H21119.6
C6—C7—C8117.3 (2)C22—C21—H21119.6
C6—C7—H7121.4C21—C22—C17120.9 (3)
C8—C7—H7121.4C21—C22—H22119.5
N1—C8—C7129.5 (2)C17—C22—H22119.5
N1—C8—C3107.19 (19)C16—C23—C24131.4 (2)
C7—C8—C3123.2 (2)C16—C23—H23114.3
N1—C9—C10114.6 (2)C24—C23—H23114.3
N1—C9—H9A108.6C25—C24—C29116.5 (2)
C10—C9—H9A108.6C25—C24—C23125.6 (2)
N1—C9—H9B108.6C29—C24—C23117.7 (3)
C10—C9—H9B108.6C24—C25—C26122.0 (3)
H9A—C9—H9B107.6C24—C25—H25119.0
C15—C10—C11118.3 (3)C26—C25—H25119.0
C15—C10—C9122.3 (2)C25—C26—C27119.7 (3)
C11—C10—C9119.3 (2)C25—C26—H26120.1
C10—C11—C12120.5 (3)C27—C26—H26120.1
C10—C11—H11119.8C28—C27—C26118.9 (3)
C12—C11—H11119.8C28—C27—H27120.6
C13—C12—C11120.5 (3)C26—C27—H27120.6
C13—C12—H12119.7C27—C28—C29121.0 (3)
C11—C12—H12119.7C27—C28—H28119.5
C14—C13—C12119.7 (3)C29—C28—H28119.5
C14—C13—H13120.2C28—C29—C24121.9 (3)
C12—C13—H13120.2C28—C29—H29119.1
C13—C14—C15119.9 (3)C24—C29—H29119.1
C13—C14—H14120.0C1—N1—C8108.66 (18)
C15—C14—H14120.0C1—N1—C9126.2 (2)
C10—C15—C14121.1 (3)C8—N1—C9125.02 (19)
C10—C15—H15119.4
N1—C1—C2—C3−0.9 (3)C2—C16—C17—C1846.9 (3)
N1—C1—C2—C16177.3 (2)C23—C16—C17—C2249.6 (4)
C1—C2—C3—C4−172.3 (3)C2—C16—C17—C22−128.0 (2)
C16—C2—C3—C49.6 (5)C22—C17—C18—C191.3 (4)
C1—C2—C3—C80.7 (3)C16—C17—C18—C19−173.8 (2)
C16—C2—C3—C8−177.4 (2)C17—C18—C19—C200.3 (4)
C8—C3—C4—C52.6 (4)C18—C19—C20—C21−0.9 (4)
C2—C3—C4—C5175.2 (3)C19—C20—C21—C220.0 (4)
C3—C4—C5—C6−0.8 (5)C20—C21—C22—C171.7 (4)
C4—C5—C6—C7−1.4 (5)C18—C17—C22—C21−2.3 (4)
C5—C6—C7—C81.5 (4)C16—C17—C22—C21172.9 (2)
C6—C7—C8—N1−175.4 (2)C2—C16—C23—C24−174.0 (2)
C6—C7—C8—C30.5 (4)C17—C16—C23—C248.5 (4)
C4—C3—C8—N1174.1 (2)C16—C23—C24—C2528.5 (4)
C2—C3—C8—N1−0.3 (3)C16—C23—C24—C29−157.1 (3)
C4—C3—C8—C7−2.6 (4)C29—C24—C25—C261.3 (4)
C2—C3—C8—C7−177.0 (2)C23—C24—C25—C26175.7 (3)
N1—C9—C10—C15−36.5 (3)C24—C25—C26—C270.2 (5)
N1—C9—C10—C11148.1 (2)C25—C26—C27—C28−1.5 (5)
C15—C10—C11—C12−1.4 (4)C26—C27—C28—C291.2 (5)
C9—C10—C11—C12174.2 (2)C27—C28—C29—C240.3 (4)
C10—C11—C12—C130.9 (4)C25—C24—C29—C28−1.6 (4)
C11—C12—C13—C140.1 (5)C23—C24—C29—C28−176.5 (2)
C12—C13—C14—C15−0.6 (5)C2—C1—N1—C80.7 (3)
C11—C10—C15—C140.9 (4)C2—C1—N1—C9177.1 (2)
C9—C10—C15—C14−174.6 (3)C7—C8—N1—C1176.2 (2)
C13—C14—C15—C100.1 (5)C3—C8—N1—C1−0.3 (3)
C1—C2—C16—C23−149.8 (3)C7—C8—N1—C9−0.2 (4)
C3—C2—C16—C2327.9 (4)C3—C8—N1—C9−176.7 (2)
C1—C2—C16—C1727.9 (4)C10—C9—N1—C1109.4 (3)
C3—C2—C16—C17−154.3 (2)C10—C9—N1—C8−74.8 (3)
C23—C16—C17—C18−135.6 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C2/C3/C8 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cg1i0.972.793.619 (3)144
C28—H28···Cg2ii0.932.923.830 (3)165

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2051).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dyker, G. (1999). Angew Chem. Int. Ed.38, 1698–1712.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ferrer, C., Amijs, C. H. M. & Echavarren, A. M. (2007). Chem. Eur. J. pp. 1358–1373. [PubMed]
  • Ritleng, V., Sirlin, C. & Pfeffer, M. (2002). Chem. Rev.102, 1731–1769. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sundberg, R. J. (1996). Indoles London: Academic Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography