PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2680.
Published online 2010 September 30. doi:  10.1107/S1600536810037190
PMCID: PMC2983382

3-Amino­pyridinium picrate

Abstract

During the formation of the title compound, C5H7N2 +·C6H2N3O7 , a phenolic proton is transferred to the pyridine N atom. In the crystal structure, the ions are linked by inter­molecular N—H(...)O and N—H(...)(O,O) hydrogen bonds into layers running parallel to (100). These layers are connected by weak π–π stacking inter­actions between symmetry-related pyridine and picric benzene rings with a centroid–centroid distance of 3.758 (2) Å, forming a three-dimensional network.

Related literature

For applications of picric acid derivatives, see: Pascard et al. (1982 [triangle]); Pearson et al. (2007 [triangle]); Shakir et al. (2009 [triangle]). For a related structure, see: Harrison et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2680-scheme1.jpg

Experimental

Crystal data

  • C5H7N2 +·C6H2N3O7
  • M r = 323.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2680-efi1.jpg
  • a = 8.2174 (8) Å
  • b = 13.5842 (13) Å
  • c = 11.8218 (12) Å
  • β = 102.117 (2)°
  • V = 1290.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 297 K
  • 0.45 × 0.05 × 0.02 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.939, T max = 0.997
  • 14192 measured reflections
  • 2804 independent reflections
  • 1391 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.162
  • S = 1.03
  • 2804 reflections
  • 217 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037190/lh5128sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037190/lh5128Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Wuhan University of Science and Technology is thanked for supporting this study.

supplementary crystallographic information

Comment

Picric acid has been used in the characterization of organic bases because of the ease of crystallization and hence purification when picrate derivatives are produced (Pascard et al., 1982; Pearson et al., 2007; Harrison et al., 2007; Shakir et al., 2009). Here, we report the crystal structure of the title salt.

In the title compound, a hydrogen atom has been transferred from the picric acid molecule to the nitrogen atom of the pyridine ring and hence a 1:1 organic is formed salt (Fig.1). In the picric acid molecule, the geometric parameters of C6—O7 = 1.236 (3)Å and C1—C6—C5 = 112.0 (2)° confirm the transfer of the proton.

In the crystal structure, the molecular components are linked into a two dimensional zigzag-like layers (Fig.2) running parallel to (110) by intermolecular N—H···O hydrogen bonds (Table 1). These adjacent (100) layers are linked by weak π–π interaction between symmetry related pyridine and picric benzene rings (centroid-to-centroid distance = 3.758 (2) Å, symmetry code: 2 - x, 1 - y, 1 - z) into a three-dimensional network.

Experimental

Picric acid (0.69 g, 3 mmol) and 3-aminopyridine (0.28 g, 3 mmol) were mixed in 10 ml ethanol. The mixture was kept at room temperature for two weeks. Yellow needeles suitable for single-crystal X-ray diffraction were obtained at the bottom of the vessel.

Refinement

The carbon-bound hydrogen atoms were placed in ideal positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The nitrogen-bound H atoms were located in a difference map and refined with Uiso(H) = 0.092Å2.

Figures

Fig. 1.
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines. For the sake of clarity, the H atoms not involved in the hydrogen-bonds pattern have been omitted.

Crystal data

C5H7N2+·C6H2N3O7F(000) = 664
Mr = 323.23Dx = 1.664 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1100 reflections
a = 8.2174 (8) Åθ = 2.3–20.4°
b = 13.5842 (13) ŵ = 0.14 mm1
c = 11.8218 (12) ÅT = 297 K
β = 102.117 (2)°Needle, yellow
V = 1290.2 (2) Å30.45 × 0.05 × 0.02 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2804 independent reflections
Radiation source: fine-focus sealed tube1391 reflections with I > 2σ(I)
graphiteRint = 0.072
[var phi] and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.939, Tmax = 0.997k = −17→17
14192 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0663P)2 + 0.0975P] where P = (Fo2 + 2Fc2)/3
2804 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8262 (3)0.49045 (18)0.2590 (2)0.0390 (7)
C20.8816 (3)0.45022 (19)0.1686 (2)0.0401 (7)
H20.86140.48190.09730.048*
C30.9673 (3)0.36279 (18)0.1827 (2)0.0378 (7)
C41.0039 (3)0.31637 (19)0.2881 (2)0.0388 (7)
H41.06360.25770.29670.047*
C50.9518 (3)0.35703 (19)0.3805 (2)0.0388 (7)
C60.8524 (4)0.4466 (2)0.3728 (2)0.0428 (7)
C70.5593 (4)0.6203 (2)0.7181 (2)0.0449 (7)
C80.5870 (4)0.5718 (2)0.8241 (2)0.0474 (8)
H80.54820.59940.88550.057*
C90.6702 (4)0.4844 (2)0.8392 (3)0.0532 (8)
H90.68660.45270.91040.064*
C100.7300 (4)0.4426 (2)0.7507 (3)0.0531 (8)
H100.78720.38310.76050.064*
C110.6221 (4)0.5750 (2)0.6304 (2)0.0470 (8)
H110.60700.60430.55780.056*
N10.7366 (3)0.58418 (19)0.2352 (3)0.0562 (7)
N21.0162 (3)0.31865 (19)0.0837 (2)0.0498 (7)
N30.9978 (4)0.3051 (2)0.4890 (2)0.0569 (7)
N40.4760 (4)0.7061 (2)0.7014 (3)0.0684 (9)
N50.7032 (3)0.4902 (2)0.6502 (2)0.0511 (7)
O10.6984 (4)0.61237 (17)0.1355 (3)0.0962 (10)
O20.6942 (4)0.6267 (2)0.3121 (2)0.1179 (12)
O30.9816 (3)0.36138 (17)−0.00931 (18)0.0755 (8)
O41.0901 (3)0.24022 (17)0.09581 (19)0.0736 (7)
O51.1054 (3)0.24169 (18)0.49917 (19)0.0764 (8)
O60.9316 (3)0.3268 (2)0.5696 (2)0.0916 (9)
O70.7949 (3)0.48236 (16)0.45224 (19)0.0770 (8)
H4A0.455 (5)0.730 (3)0.634 (3)0.092*
H4B0.436 (5)0.731 (3)0.757 (3)0.092*
H50.749 (4)0.465 (2)0.592 (3)0.092*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0361 (16)0.0317 (15)0.0490 (17)0.0008 (12)0.0087 (14)−0.0052 (13)
C20.0394 (17)0.0427 (16)0.0376 (16)−0.0036 (14)0.0069 (13)0.0015 (13)
C30.0414 (17)0.0381 (16)0.0369 (16)−0.0046 (13)0.0147 (13)−0.0068 (12)
C40.0371 (16)0.0341 (15)0.0453 (16)−0.0027 (13)0.0085 (13)−0.0026 (13)
C50.0419 (17)0.0425 (16)0.0319 (15)−0.0109 (13)0.0075 (13)0.0019 (12)
C60.0417 (18)0.0483 (17)0.0422 (17)−0.0090 (14)0.0171 (14)−0.0127 (14)
C70.0475 (18)0.0477 (18)0.0402 (17)−0.0098 (15)0.0106 (14)−0.0062 (14)
C80.0508 (19)0.0570 (19)0.0380 (17)−0.0061 (16)0.0178 (14)−0.0072 (14)
C90.056 (2)0.065 (2)0.0385 (17)−0.0058 (17)0.0098 (16)−0.0019 (15)
C100.049 (2)0.057 (2)0.0526 (19)−0.0070 (15)0.0094 (16)−0.0019 (16)
C110.0470 (19)0.061 (2)0.0333 (16)−0.0152 (16)0.0095 (14)−0.0029 (14)
N10.0469 (16)0.0525 (17)0.0693 (19)0.0071 (13)0.0129 (15)−0.0143 (15)
N20.0528 (17)0.0548 (17)0.0453 (16)−0.0010 (13)0.0183 (13)−0.0087 (13)
N30.0603 (19)0.0655 (18)0.0432 (16)−0.0104 (16)0.0070 (14)0.0083 (14)
N40.095 (2)0.0606 (19)0.0508 (18)0.0098 (17)0.0180 (17)0.0020 (15)
N50.0461 (17)0.0593 (17)0.0514 (18)−0.0099 (13)0.0184 (13)−0.0191 (14)
O10.127 (2)0.0793 (18)0.094 (2)0.0456 (17)0.0484 (19)0.0347 (15)
O20.144 (3)0.109 (2)0.087 (2)0.074 (2)−0.0071 (19)−0.0394 (17)
O30.100 (2)0.0951 (18)0.0367 (12)0.0179 (15)0.0255 (12)0.0006 (12)
O40.0958 (19)0.0592 (14)0.0733 (16)0.0264 (14)0.0347 (14)−0.0095 (12)
O50.098 (2)0.0659 (16)0.0572 (15)0.0144 (15)−0.0020 (14)0.0129 (12)
O60.094 (2)0.136 (2)0.0549 (15)0.0175 (17)0.0390 (15)0.0328 (15)
O70.106 (2)0.0784 (16)0.0612 (15)0.0045 (14)0.0509 (15)−0.0147 (12)

Geometric parameters (Å, °)

C1—C21.361 (3)C8—H80.9300
C1—C61.446 (4)C9—C101.369 (4)
C1—N11.468 (3)C9—H90.9300
C2—C31.373 (3)C10—N51.329 (4)
C2—H20.9300C10—H100.9300
C3—C41.372 (4)C11—N51.328 (4)
C3—N21.445 (3)C11—H110.9300
C4—C51.371 (3)N1—O21.190 (3)
C4—H40.9300N1—O11.216 (3)
C5—N31.443 (3)N2—O41.220 (3)
C5—C61.457 (4)N2—O31.223 (3)
C6—O71.236 (3)N3—O51.222 (3)
C7—N41.345 (4)N3—O61.229 (3)
C7—C81.392 (4)N4—H4A0.85 (4)
C7—C111.394 (4)N4—H4B0.86 (4)
C8—C91.364 (4)N5—H50.91 (3)
C2—C1—C6123.8 (2)C8—C9—C10120.8 (3)
C2—C1—N1115.8 (3)C8—C9—H9119.6
C6—C1—N1120.4 (3)C10—C9—H9119.6
C1—C2—C3120.0 (3)N5—C10—C9117.5 (3)
C1—C2—H2120.0N5—C10—H10121.2
C3—C2—H2120.0C9—C10—H10121.2
C4—C3—C2121.1 (2)N5—C11—C7120.2 (3)
C4—C3—N2120.0 (2)N5—C11—H11119.9
C2—C3—N2118.9 (2)C7—C11—H11119.9
C5—C4—C3119.5 (3)O2—N1—O1122.0 (3)
C5—C4—H4120.2O2—N1—C1119.3 (3)
C3—C4—H4120.2O1—N1—C1118.4 (3)
C4—C5—N3116.4 (3)O4—N2—O3122.4 (2)
C4—C5—C6123.4 (2)O4—N2—C3118.9 (3)
N3—C5—C6120.2 (3)O3—N2—C3118.6 (3)
O7—C6—C1122.6 (3)O5—N3—O6121.5 (3)
O7—C6—C5125.4 (3)O5—N3—C5118.8 (3)
C1—C6—C5112.0 (2)O6—N3—C5119.7 (3)
N4—C7—C8121.6 (3)C7—N4—H4A118 (3)
N4—C7—C11122.0 (3)C7—N4—H4B119 (3)
C8—C7—C11116.4 (3)H4A—N4—H4B122 (4)
C9—C8—C7120.8 (3)C11—N5—C10124.2 (3)
C9—C8—H8119.6C11—N5—H5117 (2)
C7—C8—H8119.6C10—N5—H5118 (2)
C6—C1—C2—C30.3 (4)C7—C8—C9—C100.6 (4)
N1—C1—C2—C3179.8 (2)C8—C9—C10—N5−0.2 (4)
C1—C2—C3—C4−2.4 (4)N4—C7—C11—N5−179.8 (3)
C1—C2—C3—N2176.4 (2)C8—C7—C11—N50.0 (4)
C2—C3—C4—C51.1 (4)C2—C1—N1—O2−175.1 (3)
N2—C3—C4—C5−177.7 (2)C6—C1—N1—O24.4 (4)
C3—C4—C5—N3−178.8 (2)C2—C1—N1—O19.8 (4)
C3—C4—C5—C62.4 (4)C6—C1—N1—O1−170.7 (3)
C2—C1—C6—O7−176.9 (3)C4—C3—N2—O4−0.1 (4)
N1—C1—C6—O73.6 (4)C2—C3—N2—O4−178.9 (3)
C2—C1—C6—C52.8 (4)C4—C3—N2—O3179.8 (3)
N1—C1—C6—C5−176.7 (2)C2—C3—N2—O31.0 (4)
C4—C5—C6—O7175.5 (3)C4—C5—N3—O514.6 (4)
N3—C5—C6—O7−3.2 (4)C6—C5—N3—O5−166.5 (3)
C4—C5—C6—C1−4.1 (4)C4—C5—N3—O6−167.1 (3)
N3—C5—C6—C1177.1 (2)C6—C5—N3—O611.8 (4)
N4—C7—C8—C9179.3 (3)C7—C11—N5—C100.4 (4)
C11—C7—C8—C9−0.5 (4)C9—C10—N5—C11−0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5···O70.91 (3)1.79 (3)2.607 (3)148 (3)
N5—H5···O60.91 (3)2.46 (3)3.179 (4)136 (3)
N4—H4B···O6i0.86 (4)2.48 (4)3.119 (4)132 (3)
N4—H4A···O3ii0.85 (4)2.44 (4)3.172 (4)145 (3)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5128).

References

  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.
  • Pascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). Chem. Commun. pp. 557–558.
  • Pearson, W. H., Kropf, J. E., Choy, A. L., Lee, I. Y. & Kampf, J. W. (2007). J. Org. Chem.72, 4135–4148. [PubMed]
  • Shakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Cryst. Growth, 311, 3871–3875.
  • Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography