PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2626.
Published online 2010 September 25. doi:  10.1107/S1600536810037438
PMCID: PMC2983381

Biphenyl-2,2′,4,4′-tetra­carb­oxy­lic acid monohydrate

Abstract

In the title compound, C16H10O8·H2O, the dihedral angle between the two benzene rings is 71.63 (5)°. In the crystal structure, pairs of inversion-related mol­ecules are stacked [mean inter­planar spacing = 3.5195 (18) Å], and O—H(...)O and C—H(...)O hydrogen bonds create a three-dimensional network.

Related literature

For general background to the use of aromatic carboxyl­ates as building blocks for the construction of various architectures, see: Li et al. (2008 [triangle]); Du et al. (2007 [triangle]). For previous studies on the synthesis of aromatic carboxyl­ate hydrates, see: Jiang et al. (2008 [triangle]); Li et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2626-scheme1.jpg

Experimental

Crystal data

  • C16H10O8·H2O
  • M r = 348.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2626-efi1.jpg
  • a = 7.1765 (1) Å
  • b = 9.4677 (2) Å
  • c = 11.9301 (2) Å
  • α = 106.013 (1)°
  • β = 100.098 (1)°
  • γ = 96.753 (1)°
  • V = 755.18 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 296 K
  • 0.22 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.972, T max = 0.976
  • 13177 measured reflections
  • 2663 independent reflections
  • 2441 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.123
  • S = 1.03
  • 2663 reflections
  • 236 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037438/pk2260sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037438/pk2260Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Universities and Colleges Natural Science Foundation of Henan (2009 A150011) and the Natural Science Foundation of China (200903036) for support.

supplementary crystallographic information

Comment

Aromatic carboxylates have been proven to be effective building blocks in constructing various architectures (Li et al., 2008; Du et al., 2007). Many crystal structures of aromatic carboxylic hydrates have been reported (Jiang et al., 2008; Li et al., 2009). In this paper, we report the synthesis and structure of a new aromatic carboxylic hydrate, biphenyl-2, 2', 4, 4' -tetracarboxylic acid monohydrate, (Fig. 1).

The dihedral angle between the two benzene rings of biphenyl-2, 2', 4, 4' -tetracarboxylic acid monohydrate is 71.63 (5)°, which is markedly different from 42.30 (11)° found in the biphenyl-2, 3, 3', 4'-tetracarboxylic acid monohydrate (Jiang et al., 2008). This might be a result of the hydrogen bonding ineractions of the title compound. The lattice water molecule links with biphenyl-2, 2', 4, 4'-tetracarboxylic acid via O—H···O hydrogen bonding. The extensive O—H···O hydrogen bonding and a weak intermolecular C—H···O hydrogen bond helps to stabilize the crystal structure (Fig. 2 and Table 1). In addition, pairs of inversion related molecules are stacked with mean interplanar spacing = 3.5195 (18)Å)

Experimental

A mixture of C16H10O8 (0.3360 g), BaCl2 (0.3451 g) and water (12 ml) was stirred at room temperature for 6 h. The solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, a colorless crystalline solid appeared about a month later. The resulting colorless blocks were filtered off washed with water and dried at ambient temperature.

Refinement

The H atoms of water molecules were located in difference Fourier maps and refined. All other hydrogen atoms were included in calculated positions and refined using a riding model with isotropic thermal parameters derived from the parent atoms (C—H = 0.93Å, O—H = 0.82 Å, Uiso (H) = 1.2Ueq (C) or 1.5Ueq (O)).

Figures

Fig. 1.
The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level
Fig. 2.
The O···H—O and C—H···O hydrogen bonds of biphenyl-2, 2', 4, 4' -tetracarboxylic acid monhydrate.

Crystal data

C16H10O8·H2OZ = 2
Mr = 348.26F(000) = 360
Triclinic, P1Dx = 1.532 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1765 (1) ÅCell parameters from 9316 reflections
b = 9.4677 (2) Åθ = 2.8–27.5°
c = 11.9301 (2) ŵ = 0.13 mm1
α = 106.013 (1)°T = 296 K
β = 100.098 (1)°Block, yellow
γ = 96.753 (1)°0.22 × 0.20 × 0.19 mm
V = 755.18 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer2663 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −8→8
Tmin = 0.972, Tmax = 0.976k = −11→11
13177 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0701P)2 + 0.3599P] where P = (Fo2 + 2Fc2)/3
2663 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.22 e Å3
3 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7651 (3)1.4462 (2)0.51405 (19)0.0815 (6)
H1A0.83621.48510.47990.122*
O21.0447 (2)1.4309 (2)0.61981 (17)0.0734 (5)
O30.19262 (18)1.12724 (18)0.49778 (13)0.0522 (4)
H3A0.07701.09410.47590.078*
O40.17196 (18)0.97698 (17)0.60878 (13)0.0518 (4)
O50.3535 (2)1.20930 (14)0.88045 (14)0.0531 (4)
O60.1817 (2)1.07466 (14)0.96298 (13)0.0448 (3)
H6A0.15021.15510.99160.067*
O70.4508 (2)0.46084 (14)0.83504 (15)0.0531 (4)
H7A0.41320.38730.85390.080*
O80.2313 (2)0.55361 (14)0.92899 (13)0.0474 (4)
O90.1086 (2)1.34013 (16)1.05603 (16)0.0556 (4)
C10.7674 (2)1.1428 (2)0.77090 (16)0.0376 (4)
H10.83551.11130.83060.045*
C20.8611 (3)1.2492 (2)0.73154 (17)0.0398 (4)
H20.99081.28770.76400.048*
C30.7614 (2)1.29848 (19)0.64325 (15)0.0341 (4)
C40.5674 (2)1.24238 (18)0.59864 (14)0.0308 (4)
H40.49901.27830.54190.037*
C50.4723 (2)1.13359 (17)0.63672 (13)0.0273 (3)
C60.5744 (2)1.08125 (17)0.72423 (14)0.0283 (4)
C70.4997 (2)0.95149 (17)0.76245 (14)0.0278 (3)
C80.3751 (2)0.95295 (17)0.84121 (14)0.0275 (3)
C90.3250 (2)0.82523 (17)0.87296 (14)0.0288 (4)
H90.24090.82590.92410.035*
C100.3984 (2)0.69691 (17)0.82967 (14)0.0298 (4)
C110.5231 (3)0.69593 (18)0.75326 (15)0.0346 (4)
H110.57290.61030.72360.041*
C120.5734 (2)0.82211 (19)0.72119 (15)0.0337 (4)
H120.65880.82060.67070.040*
C130.8643 (3)1.4007 (2)0.59059 (18)0.0441 (5)
C140.2659 (2)1.07440 (18)0.57925 (14)0.0289 (4)
C150.3025 (2)1.09080 (18)0.89507 (15)0.0305 (4)
C160.3493 (2)0.56452 (18)0.86928 (15)0.0326 (4)
H9B0.0046 (19)1.370 (2)1.0685 (19)0.049*
H9A0.177 (2)1.4042 (19)1.037 (2)0.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0562 (10)0.1074 (15)0.0975 (14)−0.0142 (10)0.0034 (9)0.0776 (12)
O20.0451 (9)0.0946 (13)0.0903 (13)−0.0128 (8)0.0080 (8)0.0581 (11)
O30.0305 (7)0.0725 (10)0.0609 (9)−0.0063 (6)−0.0048 (6)0.0472 (8)
O40.0309 (7)0.0645 (9)0.0665 (9)−0.0116 (6)−0.0020 (6)0.0463 (8)
O50.0791 (10)0.0269 (7)0.0717 (10)0.0150 (6)0.0410 (8)0.0268 (6)
O60.0483 (8)0.0325 (7)0.0667 (9)0.0130 (6)0.0330 (7)0.0210 (6)
O70.0648 (9)0.0334 (7)0.0836 (10)0.0199 (7)0.0408 (8)0.0341 (7)
O80.0514 (8)0.0381 (7)0.0709 (9)0.0136 (6)0.0310 (7)0.0326 (7)
O90.0501 (9)0.0410 (8)0.0905 (11)0.0181 (6)0.0342 (8)0.0280 (8)
C10.0303 (9)0.0426 (10)0.0421 (9)−0.0012 (7)0.0001 (7)0.0243 (8)
C20.0291 (9)0.0432 (10)0.0462 (10)−0.0070 (7)0.0026 (7)0.0210 (8)
C30.0327 (9)0.0336 (9)0.0372 (9)−0.0034 (7)0.0087 (7)0.0158 (7)
C40.0323 (9)0.0319 (8)0.0319 (8)0.0013 (7)0.0071 (7)0.0172 (7)
C50.0268 (8)0.0283 (8)0.0293 (8)0.0022 (6)0.0083 (6)0.0125 (6)
C60.0290 (8)0.0278 (8)0.0306 (8)0.0020 (6)0.0081 (6)0.0130 (6)
C70.0270 (8)0.0286 (8)0.0292 (8)0.0011 (6)0.0027 (6)0.0147 (6)
C80.0264 (8)0.0256 (8)0.0328 (8)0.0024 (6)0.0051 (6)0.0144 (6)
C90.0288 (8)0.0274 (8)0.0350 (8)0.0029 (6)0.0103 (6)0.0156 (6)
C100.0315 (8)0.0252 (8)0.0349 (8)0.0028 (6)0.0063 (7)0.0142 (6)
C110.0409 (9)0.0277 (8)0.0401 (9)0.0095 (7)0.0136 (7)0.0138 (7)
C120.0378 (9)0.0340 (9)0.0356 (9)0.0068 (7)0.0148 (7)0.0164 (7)
C130.0344 (10)0.0508 (11)0.0503 (11)−0.0077 (8)0.0054 (8)0.0289 (9)
C140.0274 (8)0.0321 (8)0.0310 (8)0.0028 (6)0.0075 (6)0.0159 (6)
C150.0309 (8)0.0277 (8)0.0371 (8)0.0049 (6)0.0078 (7)0.0165 (7)
C160.0337 (9)0.0264 (8)0.0422 (9)0.0048 (6)0.0097 (7)0.0170 (7)

Geometric parameters (Å, °)

O1—C131.260 (2)C3—C41.384 (2)
O1—H1A0.8200C3—C131.486 (2)
O2—C131.256 (2)C4—C51.391 (2)
O3—C141.274 (2)C4—H40.9300
O3—H3A0.8200C5—C61.405 (2)
O4—C141.243 (2)C5—C141.489 (2)
O5—C151.207 (2)C6—C71.498 (2)
O6—C151.309 (2)C7—C121.391 (2)
O6—H6A0.8200C7—C81.405 (2)
O7—C161.309 (2)C8—C91.390 (2)
O7—H7A0.8200C8—C151.484 (2)
O8—C161.211 (2)C9—C101.385 (2)
O9—H9B0.852 (9)C9—H90.9300
O9—H9A0.843 (9)C10—C111.384 (2)
C1—C21.378 (2)C10—C161.483 (2)
C1—C61.389 (2)C11—C121.380 (2)
C1—H10.9300C11—H110.9300
C2—C31.387 (3)C12—H120.9300
C2—H20.9300
C13—O1—H1A109.5C9—C8—C15119.43 (14)
C14—O3—H3A109.5C7—C8—C15120.93 (14)
C15—O6—H6A109.5C10—C9—C8121.11 (15)
C16—O7—H7A109.5C10—C9—H9119.4
H9B—O9—H9A109.6 (14)C8—C9—H9119.4
C2—C1—C6122.08 (16)C11—C10—C9119.36 (14)
C2—C1—H1119.0C11—C10—C16120.69 (15)
C6—C1—H1119.0C9—C10—C16119.91 (15)
C1—C2—C3119.76 (16)C12—C11—C10119.95 (15)
C1—C2—H2120.1C12—C11—H11120.0
C3—C2—H2120.1C10—C11—H11120.0
C4—C3—C2119.01 (15)C11—C12—C7121.64 (15)
C4—C3—C13120.32 (16)C11—C12—H12119.2
C2—C3—C13120.49 (16)C7—C12—H12119.2
C3—C4—C5121.54 (15)O2—C13—O1123.66 (18)
C3—C4—H4119.2O2—C13—C3118.64 (17)
C5—C4—H4119.2O1—C13—C3117.59 (16)
C4—C5—C6119.40 (14)O4—C14—O3122.26 (15)
C4—C5—C14117.74 (14)O4—C14—C5121.23 (14)
C6—C5—C14122.84 (14)O3—C14—C5116.51 (14)
C1—C6—C5118.14 (14)O5—C15—O6122.33 (16)
C1—C6—C7115.96 (14)O5—C15—C8123.22 (15)
C5—C6—C7125.51 (14)O6—C15—C8114.42 (14)
C12—C7—C8118.34 (14)O8—C16—O7123.12 (15)
C12—C7—C6115.43 (14)O8—C16—C10124.19 (15)
C8—C7—C6126.07 (14)O7—C16—C10112.68 (14)
C9—C8—C7119.59 (15)
C6—C1—C2—C30.5 (3)C8—C9—C10—C11−0.2 (2)
C1—C2—C3—C41.7 (3)C8—C9—C10—C16177.30 (15)
C1—C2—C3—C13−173.46 (18)C9—C10—C11—C120.2 (3)
C2—C3—C4—C5−2.7 (3)C16—C10—C11—C12−177.33 (16)
C13—C3—C4—C5172.56 (16)C10—C11—C12—C7−0.9 (3)
C3—C4—C5—C61.3 (2)C8—C7—C12—C111.7 (2)
C3—C4—C5—C14−176.96 (15)C6—C7—C12—C11177.43 (15)
C2—C1—C6—C5−1.9 (3)C4—C3—C13—O2−168.9 (2)
C2—C1—C6—C7171.29 (17)C2—C3—C13—O26.2 (3)
C4—C5—C6—C11.0 (2)C4—C3—C13—O17.5 (3)
C14—C5—C6—C1179.14 (15)C2—C3—C13—O1−177.4 (2)
C4—C5—C6—C7−171.49 (15)C4—C5—C14—O4179.96 (16)
C14—C5—C6—C76.6 (2)C6—C5—C14—O41.8 (3)
C1—C6—C7—C12−67.3 (2)C4—C5—C14—O30.9 (2)
C5—C6—C7—C12105.40 (19)C6—C5—C14—O3−177.24 (16)
C1—C6—C7—C8108.06 (19)C9—C8—C15—O5173.05 (17)
C5—C6—C7—C8−79.3 (2)C7—C8—C15—O5−4.3 (3)
C12—C7—C8—C9−1.7 (2)C9—C8—C15—O6−5.2 (2)
C6—C7—C8—C9−176.93 (15)C7—C8—C15—O6177.43 (15)
C12—C7—C8—C15175.65 (15)C11—C10—C16—O8−174.54 (17)
C6—C7—C8—C150.5 (2)C9—C10—C16—O88.0 (3)
C7—C8—C9—C101.0 (2)C11—C10—C16—O76.9 (2)
C15—C8—C9—C10−176.42 (14)C9—C10—C16—O7−170.53 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6A···O90.821.792.6076 (18)174
C4—H4···O30.932.372.706 (2)101
C9—H9···O60.932.382.711 (2)101
O1—H1A···O2i0.821.872.680 (2)169
O3—H3A···O4ii0.821.842.6400 (17)166
O7—H7A···O5iii0.821.822.6280 (17)171
O9—H9B···O8iv0.85 (1)1.92 (1)2.7616 (19)170 (2)
O9—H9A···O8v0.84 (1)2.20 (1)2.983 (2)154 (2)
C12—H12···O3vi0.932.573.451 (2)159

Symmetry codes: (i) −x+2, −y+3, −z+1; (ii) −x, −y+2, −z+1; (iii) x, y−1, z; (iv) −x, −y+2, −z+2; (v) x, y+1, z; (vi) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2260).

References

  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028.
  • Jiang, Y., Men, J., Liu, C.-Y., Zhang, Y. & Gao, G.-W. (2008). Acta Cryst. E64, o846. [PMC free article] [PubMed]
  • Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun.11, 1405– 1408.
  • Li, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography