PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2527.
Published online 2010 September 11. doi:  10.1107/S1600536810035610
PMCID: PMC2983375

4,5-Bis(4-meth­oxy­phen­oxy)phthalonitrile

Abstract

The title compound, C22H16N2O4, was obtained unintentionally as the product of an attempted synthesis of a new phthalocyanine. The dihedral angles formed by the central benzene ring with the aromatic rings of the meth­oxy­phen­oxy groups are 85.39 (5) and 64.19 (5)°.

Related literature

For background information on phthalcoyanines, see: Hanack & Lang (1994 [triangle]). For the synthesis of the title compound, see: Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2527-scheme1.jpg

Experimental

Crystal data

  • C22H16N2O4
  • M r = 372.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2527-efi1.jpg
  • a = 13.7614 (2) Å
  • b = 10.4926 (1) Å
  • c = 14.0701 (2) Å
  • β = 112.551 (1)°
  • V = 1876.28 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.38 × 0.23 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.966, T max = 0.988
  • 24018 measured reflections
  • 3311 independent reflections
  • 2189 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.097
  • S = 1.02
  • 3311 reflections
  • 255 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035610/rz2481sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035610/rz2481Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation and the Research Fund for the Doctoral Program of Higher Education of China.

supplementary crystallographic information

Comment

In the past few years, phthalocyanines have been extensively studied for their high thermal stability as well as their wide application fields (Hanack & Lang, 1994). As part of our ongoing studies of phthalocyanines (Li et al., 2006), we report herein the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The C—N bond lengths within each C[equivalent]N group are almost equal, with an average value of 1.141 (2) Å. The C and O atoms of the central 1,2-dioxybenzene group and the cyanide groups are substantially coplanar [maximum deviation 0.029 (2) Å for atom N2] and form dihedral angles of 85.39 (5) and 64.19 (5)° with the C16—C21 and C9—C14 benzene rings. The crystal packing is stabilized only by van der Waals interactions.

Experimental

The title compound was prepared according to the literarure method (Li et al., 2006), using vapour diffusion of ethanol into a toluene solution of the title compound at room temperature. Analysis calculated (%): C 70.96, N 7.52, H 4.33; found(%): C 70.51, N 7.21, H 4.19. 1H NMR (CDCl3, δ, p.p.m.): 7.95 (s, 2H), 7.36 (d, 4H), 6.92 (m, 4H), 3.90 (s, 6H).

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Crystal data

C22H16N2O4F(000) = 776
Mr = 372.37Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5549 reflections
a = 13.7614 (2) Åθ = 2.5–23.5°
b = 10.4926 (1) ŵ = 0.09 mm1
c = 14.0701 (2) ÅT = 298 K
β = 112.551 (1)°Block, colourless
V = 1876.28 (4) Å30.38 × 0.23 × 0.13 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3311 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scanθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −16→16
Tmin = 0.966, Tmax = 0.988k = −11→12
24018 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4099P] where P = (Fo2 + 2Fc2)/3
3311 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C170.07245 (13)0.02765 (18)0.29042 (13)0.0566 (5)
H170.05240.10960.26530.068*
N20.54537 (15)0.17422 (18)0.53262 (13)0.0822 (6)
N10.63571 (15)0.30662 (18)0.31740 (13)0.0820 (5)
C20.49439 (14)0.16026 (18)0.44763 (15)0.0572 (5)
C10.55634 (16)0.25589 (18)0.29120 (14)0.0598 (5)
O10.22453 (9)0.09523 (14)0.03832 (9)0.0684 (4)
O20.16999 (9)0.01007 (12)0.18264 (8)0.0621 (4)
O30.33469 (11)0.01535 (14)−0.29526 (10)0.0796 (4)
O40.02251 (11)−0.19057 (15)0.46372 (11)0.0843 (5)
C50.33212 (13)0.08186 (16)0.31600 (12)0.0496 (4)
H50.31240.05070.36790.060*
C30.45763 (13)0.19033 (16)0.26340 (13)0.0494 (4)
C70.29686 (13)0.11161 (17)0.13679 (12)0.0510 (4)
C60.26639 (13)0.06676 (16)0.21448 (12)0.0485 (4)
C40.42795 (13)0.14356 (16)0.34096 (12)0.0475 (4)
C80.39146 (13)0.17408 (16)0.16126 (13)0.0534 (5)
H80.41090.20530.10920.064*
C90.25752 (13)0.07923 (17)−0.04349 (12)0.0513 (4)
C110.21973 (15)0.11325 (19)−0.22164 (13)0.0611 (5)
H110.17800.1501−0.28410.073*
C120.30366 (15)0.03855 (18)−0.21509 (13)0.0561 (5)
C100.19704 (14)0.13386 (19)−0.13506 (13)0.0599 (5)
H100.14040.1851−0.13940.072*
C140.34035 (16)0.0024 (2)−0.03671 (14)0.0701 (6)
H140.3807−0.03640.02530.084*
C150.25790 (19)0.0227 (2)−0.39650 (15)0.0916 (7)
H15A0.1982−0.0284−0.40170.137*
H15B0.2871−0.0083−0.44410.137*
H15C0.23620.1097−0.41250.137*
C130.36321 (16)−0.0166 (2)−0.12246 (15)0.0729 (6)
H130.4200−0.0679−0.11770.087*
C160.13818 (13)−0.04202 (18)0.25815 (12)0.0500 (4)
C190.06522 (13)−0.14685 (19)0.39663 (13)0.0562 (5)
C180.03643 (14)−0.02478 (19)0.36030 (14)0.0611 (5)
H18−0.00760.02230.38320.073*
C200.13229 (14)−0.21514 (19)0.36496 (14)0.0605 (5)
H200.1529−0.29680.39030.073*
C210.16913 (14)−0.16199 (19)0.29513 (14)0.0610 (5)
H210.2148−0.20770.27350.073*
C220.05311 (19)−0.3141 (2)0.50731 (17)0.0959 (8)
H22A0.0348−0.37640.45330.144*
H22B0.0174−0.33330.55230.144*
H22C0.1278−0.31560.54570.144*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C170.0538 (11)0.0585 (12)0.0579 (11)0.0016 (9)0.0218 (9)0.0032 (9)
N20.0906 (13)0.0919 (14)0.0548 (11)−0.0179 (11)0.0175 (10)−0.0080 (9)
N10.0812 (12)0.0891 (13)0.0840 (12)−0.0312 (11)0.0409 (10)−0.0140 (10)
C20.0604 (11)0.0590 (12)0.0547 (12)−0.0090 (9)0.0249 (10)−0.0040 (9)
C10.0674 (13)0.0617 (13)0.0582 (12)−0.0135 (11)0.0330 (10)−0.0070 (9)
O10.0540 (7)0.1085 (11)0.0438 (7)−0.0043 (7)0.0200 (6)0.0038 (7)
O20.0499 (7)0.0901 (10)0.0466 (7)−0.0137 (7)0.0187 (6)0.0044 (6)
O30.0843 (10)0.1044 (12)0.0543 (8)0.0018 (8)0.0311 (7)−0.0108 (8)
O40.0803 (10)0.1067 (12)0.0830 (10)0.0058 (9)0.0502 (8)0.0287 (9)
C50.0543 (11)0.0557 (11)0.0444 (10)0.0003 (9)0.0250 (8)0.0026 (8)
C30.0525 (10)0.0480 (10)0.0533 (10)−0.0039 (8)0.0263 (9)−0.0024 (8)
C70.0521 (10)0.0591 (11)0.0427 (10)0.0022 (9)0.0193 (8)0.0028 (8)
C60.0453 (10)0.0532 (11)0.0495 (10)−0.0009 (8)0.0211 (8)0.0016 (8)
C40.0506 (10)0.0473 (10)0.0463 (10)−0.0005 (8)0.0205 (8)−0.0028 (8)
C80.0591 (11)0.0591 (12)0.0502 (10)−0.0017 (9)0.0302 (9)0.0042 (9)
C90.0506 (10)0.0611 (12)0.0423 (10)−0.0062 (9)0.0179 (8)0.0023 (8)
C110.0629 (12)0.0727 (13)0.0433 (10)−0.0001 (10)0.0155 (9)0.0107 (9)
C120.0610 (12)0.0617 (12)0.0463 (10)−0.0065 (10)0.0213 (9)−0.0047 (9)
C100.0532 (11)0.0723 (13)0.0523 (11)0.0070 (10)0.0180 (9)0.0086 (10)
C140.0786 (14)0.0786 (15)0.0464 (11)0.0182 (11)0.0166 (10)0.0123 (10)
C150.1065 (18)0.120 (2)0.0493 (12)−0.0121 (15)0.0310 (12)−0.0134 (12)
C130.0765 (14)0.0812 (15)0.0571 (12)0.0228 (11)0.0213 (11)−0.0005 (11)
C160.0428 (9)0.0633 (12)0.0441 (9)−0.0084 (9)0.0166 (8)0.0005 (9)
C190.0463 (10)0.0733 (14)0.0511 (10)−0.0036 (10)0.0211 (9)0.0057 (10)
C180.0558 (11)0.0723 (14)0.0632 (12)0.0069 (10)0.0316 (10)0.0005 (10)
C200.0590 (11)0.0601 (12)0.0620 (12)0.0040 (10)0.0229 (10)0.0087 (10)
C210.0575 (11)0.0706 (14)0.0613 (11)0.0063 (10)0.0298 (9)−0.0009 (10)
C220.0987 (17)0.113 (2)0.0784 (15)−0.0085 (15)0.0363 (13)0.0389 (14)

Geometric parameters (Å, °)

C17—C161.369 (2)C9—C101.363 (2)
C17—C181.374 (2)C9—C141.369 (2)
C17—H170.9300C11—C121.369 (3)
N2—C21.140 (2)C11—C101.386 (2)
N1—C11.142 (2)C11—H110.9300
C2—C41.438 (2)C12—C131.373 (3)
C1—C31.437 (3)C10—H100.9300
O1—C71.3719 (19)C14—C131.373 (3)
O1—C91.400 (2)C14—H140.9300
O2—C61.3633 (19)C15—H15A0.9600
O2—C161.4057 (19)C15—H15B0.9600
O3—C121.372 (2)C15—H15C0.9600
O3—C151.413 (2)C13—H130.9300
O4—C191.369 (2)C16—C211.366 (2)
O4—C221.426 (3)C19—C201.371 (2)
C5—C61.376 (2)C19—C181.380 (3)
C5—C41.388 (2)C18—H180.9300
C5—H50.9300C20—C211.384 (2)
C3—C81.386 (2)C20—H200.9300
C3—C41.393 (2)C21—H210.9300
C7—C81.378 (2)C22—H22A0.9600
C7—C61.394 (2)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
C16—C17—C18119.27 (18)C9—C10—C11120.23 (18)
C16—C17—H17120.4C9—C10—H10119.9
C18—C17—H17120.4C11—C10—H10119.9
N2—C2—C4178.6 (2)C9—C14—C13119.32 (17)
N1—C1—C3177.2 (2)C9—C14—H14120.3
C7—O1—C9120.46 (13)C13—C14—H14120.3
C6—O2—C16117.85 (12)O3—C15—H15A109.5
C12—O3—C15118.08 (16)O3—C15—H15B109.5
C19—O4—C22117.84 (16)H15A—C15—H15B109.5
C6—C5—C4119.94 (15)O3—C15—H15C109.5
C6—C5—H5120.0H15A—C15—H15C109.5
C4—C5—H5120.0H15B—C15—H15C109.5
C8—C3—C4119.71 (16)C14—C13—C12121.19 (19)
C8—C3—C1121.20 (16)C14—C13—H13119.4
C4—C3—C1119.08 (15)C12—C13—H13119.4
O1—C7—C8124.19 (15)C21—C16—C17120.99 (16)
O1—C7—C6115.44 (15)C21—C16—O2120.27 (16)
C8—C7—C6120.27 (15)C17—C16—O2118.68 (17)
O2—C6—C5124.12 (15)O4—C19—C20124.73 (18)
O2—C6—C7115.91 (14)O4—C19—C18115.37 (17)
C5—C6—C7119.96 (16)C20—C19—C18119.89 (17)
C5—C4—C3120.11 (15)C17—C18—C19120.37 (17)
C5—C4—C2118.90 (15)C17—C18—H18119.8
C3—C4—C2120.98 (15)C19—C18—H18119.8
C7—C8—C3119.99 (16)C19—C20—C21119.71 (18)
C7—C8—H8120.0C19—C20—H20120.1
C3—C8—H8120.0C21—C20—H20120.1
C10—C9—C14120.23 (17)C16—C21—C20119.74 (17)
C10—C9—O1116.98 (16)C16—C21—H21120.1
C14—C9—O1122.49 (16)C20—C21—H21120.1
C12—C11—C10119.92 (17)O4—C22—H22A109.5
C12—C11—H11120.0O4—C22—H22B109.5
C10—C11—H11120.0H22A—C22—H22B109.5
C11—C12—O3124.51 (17)O4—C22—H22C109.5
C11—C12—C13119.09 (18)H22A—C22—H22C109.5
O3—C12—C13116.40 (18)H22B—C22—H22C109.5
C9—O1—C7—C833.4 (3)C15—O3—C12—C11−26.5 (3)
C9—O1—C7—C6−150.32 (16)C15—O3—C12—C13154.53 (19)
C16—O2—C6—C5−3.4 (2)C14—C9—C10—C11−0.7 (3)
C16—O2—C6—C7177.01 (15)O1—C9—C10—C11−174.62 (16)
C4—C5—C6—O2−178.51 (15)C12—C11—C10—C9−0.5 (3)
C4—C5—C6—C71.0 (3)C10—C9—C14—C131.4 (3)
O1—C7—C6—O21.4 (2)O1—C9—C14—C13174.93 (18)
C8—C7—C6—O2177.87 (15)C9—C14—C13—C12−0.9 (3)
O1—C7—C6—C5−178.18 (15)C11—C12—C13—C14−0.4 (3)
C8—C7—C6—C5−1.7 (3)O3—C12—C13—C14178.69 (18)
C6—C5—C4—C30.1 (2)C18—C17—C16—C21−0.7 (3)
C6—C5—C4—C2178.85 (16)C18—C17—C16—O2176.69 (15)
C8—C3—C4—C5−0.5 (2)C6—O2—C16—C21−83.9 (2)
C1—C3—C4—C5178.88 (16)C6—O2—C16—C1798.69 (18)
C8—C3—C4—C2−179.28 (16)C22—O4—C19—C202.7 (3)
C1—C3—C4—C20.1 (2)C22—O4—C19—C18−177.31 (17)
O1—C7—C8—C3177.40 (16)C16—C17—C18—C19−0.7 (3)
C6—C7—C8—C31.3 (3)O4—C19—C18—C17−178.31 (16)
C4—C3—C8—C7−0.2 (3)C20—C19—C18—C171.7 (3)
C1—C3—C8—C7−179.53 (16)O4—C19—C20—C21178.76 (17)
C7—O1—C9—C10−143.22 (17)C18—C19—C20—C21−1.2 (3)
C7—O1—C9—C1443.1 (2)C17—C16—C21—C201.1 (3)
C10—C11—C12—O3−177.94 (17)O2—C16—C21—C20−176.20 (15)
C10—C11—C12—C131.1 (3)C19—C20—C21—C16−0.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2481).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hanack, M. & Lang, M. (1994). Adv. Mater.6, 819–833.
  • Li, R., Zhang, X., Zhu, P., Ng, D. K. P., Kobayashi, N. & Jiang, J. (2006). Inorg. Chem.45, 2327–2334. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography