PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1234–m1235.
Published online 2010 September 11. doi:  10.1107/S1600536810035634
PMCID: PMC2983374

Poly[[diaqua­bis­(μ3-isonicotinato-κ3 N:O:O′)bis­(μ2-isonicotinato-κ2 N:O)gadolinium(III)disiliver(I)] nitrate monohydrate]

Abstract

In the title compound, {[Ag2Gd(C6H4NO2)4(H2O)2]NO3·H2O}n, the GdIII ion is coordinated by eight O atoms from six isonicotinate ligands and two water mol­ecules in a distorted square anti­prismatic geometry. Two AgI ions are each bonded to two N atoms from two isonicotinate ligands in a linear or bow-like fashion [N—Ag—N angles = 178.6 (2) and 147.1 (2)°]. These metal ions are connected by the isonicotin­ate ligands into a layer parallel to (010). O—H(...)O hydrogen bonds donated by the coordinated and uncoordinated water mol­ecules and intra­layer π–π stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.551 (4) and 3.555 (4) Å] are observed. The layers inter­act with each other by inter­layer Ag(...)O(aqua) contacts [2.731 (4) Å] and π–π stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.466 (3) and 3.516 (3) Å], resulting in the formation of a three-dimensional supra­molecular structure.

Related literature

For general background to the structures and properties of lanthanide–transition metal coordination polymers, see: Cheng et al. (2007 [triangle], 2008 [triangle]); Fan & Wu (2010 [triangle]); Fang et al. (2009 [triangle]); Luo et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1234-scheme1.jpg

Experimental

Crystal data

  • [Ag2Gd(C6H4NO2)4(H2O)2]NO3·H2O
  • M r = 977.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1234-efi2.jpg
  • a = 16.889 (8) Å
  • b = 24.744 (11) Å
  • c = 6.750 (3) Å
  • β = 96.240 (9)°
  • V = 2804 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.80 mm−1
  • T = 293 K
  • 0.30 × 0.12 × 0.08 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007 [triangle]) T min = 0.703, T max = 1.000
  • 16445 measured reflections
  • 4859 independent reflections
  • 4370 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.129
  • S = 1.08
  • 4859 reflections
  • 416 parameters
  • H-atom parameters constrained
  • Δρmax = 1.38 e Å−3
  • Δρmin = −1.27 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035634/hy2346sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035634/hy2346Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Young Talent Fund of Fujian Province (No. 2007 F3060).

supplementary crystallographic information

Comment

In recent years, investigations on the design and synthesis of lanthanide-transition metal coordination polymers have attracted great interest not only for their fascinating structural topologies but also for their potential applications in magnetism, luminescence materials, molecular adsorption, and bimetallic catalysis (Cheng et al., 2007, 2008; Fan & Wu, 2010; Fang et al., 2009; Luo et al., 2007). Isonicotinic acid, which acts as a multidentate ligand possessing N and O donor atoms, is utilized to construct lanthanide-transition metal coordination polymers via the carboxylate group coordinating to lanthanide ions and N atom bonding to transition metal ions, such as AgI or CuI ions. We report herein the crystal structure of the title 4d-4f compound by the reaction of Gd2O3, isonicotinic acid and AgNO3 under hydrothermal conditions.

As shown in Fig. 1, the asymmetric unit of the title compound contains one GdIII ion, two AgI ions, four isonicotinate ligands, two coordinated water molecules, one nitrate ion, and one uncoordinated water molecule. The GdIII ion is coordinated by eight O atoms from six isonicotinate ligands and two water molecules in a distorted square antiprismatic geometry, with the Gd—O bond lengths and O—Gd—O bond angles being from 2.356 (4) to 2.534 (4) Å and 71.22 (13) to 145.29 (14)°, respectively (Table 1). Each AgI ion is bonded to two N atoms from two different isonicotinate ligands in a linear or bow-like fashion, with the Ag—N bond lengths of 2.145 (5)–2.201 (5) Å and N—Ag—N bond angles of 178.5 (2)° and 147.30 (19) (Table 1). Adjacent Gd centers are connected by two carboxylate groups from two different isonicotinate ligands, forming one-dimensional chains, which are further linked by AgI ions to construct two-dimensional layers. The layers are stabilized by O—H···O hydrogen bonds involving the coordinated and uncoordinated water molecules (Table 2) and intralayer π–π stacking interactions between the pyridine rings, with centroid–centroid distances of 3.551 (4) and 3.555 (4) Å (Spek, 2009. The layers interact each other by interlayer Ag2···O10(aqua) contacts [2.731 (4) Å] and π–π stacking interactions between the pyridine rings from two neighboring layers, with centroid–centroid distances of 3.466 (3) and 3.516 (3) Å, which result in the formation of a three-dimensional supramolecular structure (Fig. 2).

Experimental

A mixture of Gd2O3 (0.181 g, 0.5 mmol), isonicotinic acid (0.123 g, 1 mmol), AgNO3 (0.170 g, 1 mmol) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 7 d and then cooled to room temperature at a rate of 0.2 K h-1. The colorless crystals obtained were washed with water and dried in air (yield 32% based on Gd).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.85 Å and Uiso(H) = 1.2Ueq(C, O). The highest residual electron density was found 1.18 Å from O10 and the deepest hole 0.81 Å from Gd1.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Additional symmetry related atoms are included to complete the coordination geomtry around the Gd atom. [Symmetry code: (A) x, 1/2-y, 1/2+z.]
Fig. 2.
The three-dimensional supramolecular structure viewed along the c axis, formed through weak interlayer Ag···O contacts and π–π stacking interactions (dashed lines).

Crystal data

[Ag2Gd(C6H4NO2)4(H2O)2]NO3·H2OF(000) = 1884
Mr = 977.46Dx = 2.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6663 reflections
a = 16.889 (8) Åθ = 3.0–27.5°
b = 24.744 (11) ŵ = 3.80 mm1
c = 6.750 (3) ÅT = 293 K
β = 96.240 (9)°Block, colorless
V = 2804 (2) Å30.30 × 0.12 × 0.08 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer4859 independent reflections
Radiation source: fine-focus sealed tube4370 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007)h = −20→19
Tmin = 0.703, Tmax = 1.000k = −28→29
16445 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0925P)2 + 0.0116P] where P = (Fo2 + 2Fc2)/3
4859 reflections(Δ/σ)max = 0.002
416 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = −1.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Gd10.769985 (15)0.162835 (10)0.61682 (4)0.01965 (14)
Ag11.27129 (3)0.27098 (2)0.49007 (9)0.04268 (18)
Ag20.26502 (3)0.00962 (2)0.40147 (9)0.04637 (19)
O10.8613 (2)0.23037 (17)0.5464 (8)0.0399 (11)
O20.8530 (2)0.31392 (15)0.4284 (6)0.0255 (8)
O30.8850 (2)0.10782 (16)0.6024 (6)0.0309 (9)
O40.9135 (3)0.05792 (18)0.8754 (6)0.0342 (10)
O50.6664 (3)0.1044 (2)0.4728 (6)0.0412 (12)
O60.6514 (3)0.08461 (19)0.1515 (7)0.0380 (11)
O70.6853 (2)0.22994 (18)0.4473 (7)0.0394 (11)
O80.6733 (2)0.31472 (17)0.3362 (6)0.0305 (9)
O90.7837 (3)0.1483 (2)0.2626 (6)0.0419 (12)
H9A0.76610.11610.25020.050*
H9B0.81570.16390.19240.050*
O100.7581 (2)0.08017 (15)0.8329 (6)0.0293 (9)
H10C0.80590.07170.87220.035*
H10A0.73530.08170.93900.035*
O110.2993 (4)0.0486 (3)0.8246 (9)0.076 (2)
O120.2422 (4)0.0839 (3)1.0578 (9)0.084 (2)
O130.2575 (5)0.1295 (3)0.7976 (11)0.083 (2)
O141.2728 (4)0.3429 (2)0.9058 (12)0.0660 (18)
H14C1.28160.34321.03220.08 (4)*
H14B1.24060.36190.82920.095*
N11.1448 (3)0.2720 (2)0.4982 (7)0.0295 (11)
N21.1488 (3)0.0291 (2)0.4987 (8)0.0319 (12)
N30.3875 (3)0.0365 (2)0.3745 (8)0.0317 (11)
N40.3979 (3)0.2720 (2)0.4807 (8)0.0326 (12)
N50.2680 (4)0.0875 (3)0.8983 (11)0.0524 (17)
C11.1038 (3)0.3187 (3)0.4945 (9)0.0300 (13)
H1A1.13210.35100.49700.036*
C21.0215 (3)0.3210 (2)0.4872 (9)0.0254 (12)
H2A0.99520.35410.48040.030*
C30.9793 (3)0.2732 (2)0.4900 (8)0.0192 (11)
C41.0219 (3)0.2248 (2)0.4990 (9)0.0244 (12)
H4A0.99510.19200.50200.029*
C51.1036 (4)0.2255 (3)0.5035 (9)0.0306 (13)
H5A1.13120.19290.51030.037*
C60.8906 (3)0.2727 (2)0.4838 (7)0.0202 (11)
C71.0969 (4)0.0607 (2)0.3909 (10)0.0319 (13)
H7A1.10930.07240.26700.038*
C81.0253 (4)0.0770 (2)0.4541 (9)0.0286 (13)
H8A0.98970.09800.37230.034*
C91.0080 (3)0.0614 (2)0.6418 (8)0.0209 (11)
C101.0615 (3)0.0291 (2)0.7561 (9)0.0299 (13)
H10B1.05140.01800.88260.036*
C111.1301 (4)0.0136 (2)0.6792 (10)0.0325 (14)
H11A1.1654−0.00890.75580.039*
C120.9283 (3)0.0766 (2)0.7152 (8)0.0229 (12)
C130.4339 (4)0.0597 (3)0.5286 (9)0.0327 (14)
H13A0.41270.06430.64900.039*
C140.5102 (4)0.0765 (2)0.5146 (10)0.0326 (14)
H14A0.54060.09100.62500.039*
C150.5418 (3)0.0717 (2)0.3342 (8)0.0219 (11)
C160.4947 (4)0.0496 (2)0.1764 (8)0.0294 (13)
H16A0.51390.04620.05300.035*
C170.4192 (4)0.0327 (3)0.2018 (10)0.0328 (14)
H17A0.38830.01780.09300.039*
C180.6282 (3)0.0883 (2)0.3187 (8)0.0231 (12)
C190.4396 (3)0.2255 (2)0.4717 (9)0.0288 (13)
H19A0.41250.19280.47410.035*
C200.5204 (3)0.2245 (2)0.4593 (8)0.0234 (12)
H20A0.54760.19180.45970.028*
C210.4397 (4)0.3187 (3)0.4771 (9)0.0323 (14)
H21A0.41300.35110.49120.039*
C220.5186 (3)0.3206 (2)0.4539 (9)0.0260 (12)
H22A0.54410.35360.44340.031*
C230.5604 (3)0.2726 (2)0.4462 (7)0.0202 (11)
C240.6471 (3)0.2728 (2)0.4095 (8)0.0232 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Gd10.0133 (2)0.0206 (2)0.0256 (2)−0.00073 (9)0.00462 (13)0.00042 (9)
Ag10.0119 (3)0.0577 (4)0.0593 (4)−0.0001 (2)0.0077 (2)0.0006 (3)
Ag20.0197 (3)0.0572 (4)0.0642 (4)0.0012 (2)0.0137 (2)0.0041 (3)
O10.016 (2)0.032 (2)0.071 (3)−0.0077 (18)0.004 (2)0.019 (2)
O20.0152 (19)0.028 (2)0.033 (2)0.0050 (17)−0.0015 (16)0.0059 (17)
O30.027 (2)0.030 (2)0.037 (2)0.0107 (18)0.0090 (19)0.0024 (18)
O40.033 (2)0.042 (3)0.029 (2)0.016 (2)0.0073 (19)0.0101 (19)
O50.036 (3)0.056 (3)0.030 (2)−0.026 (2)−0.002 (2)−0.001 (2)
O60.029 (2)0.054 (3)0.033 (2)−0.010 (2)0.0116 (19)−0.005 (2)
O70.016 (2)0.041 (3)0.061 (3)0.0114 (19)0.004 (2)0.015 (2)
O80.019 (2)0.035 (2)0.039 (2)−0.0045 (18)0.0097 (18)0.0090 (19)
O90.041 (3)0.063 (3)0.023 (2)−0.022 (2)0.0083 (19)−0.002 (2)
O100.026 (2)0.025 (2)0.038 (2)0.0025 (18)0.0141 (18)0.0036 (17)
O110.051 (4)0.112 (6)0.063 (4)0.029 (4)0.002 (3)−0.033 (4)
O120.065 (4)0.143 (7)0.042 (3)0.047 (4)−0.002 (3)−0.002 (3)
O130.102 (6)0.068 (5)0.081 (4)−0.019 (4)0.020 (4)−0.007 (4)
O140.062 (4)0.038 (3)0.098 (6)−0.002 (3)0.007 (4)−0.001 (3)
N10.015 (2)0.042 (3)0.032 (3)−0.001 (2)0.005 (2)0.000 (2)
N20.018 (3)0.034 (3)0.045 (3)−0.002 (2)0.009 (2)−0.006 (2)
N30.016 (2)0.032 (3)0.047 (3)0.002 (2)0.003 (2)0.002 (2)
N40.018 (3)0.036 (3)0.045 (3)0.001 (2)0.012 (2)−0.003 (2)
N50.030 (3)0.063 (4)0.064 (5)0.002 (3)0.006 (3)−0.018 (4)
C10.016 (3)0.030 (3)0.044 (3)−0.008 (3)0.006 (3)0.000 (3)
C20.015 (3)0.023 (3)0.039 (3)−0.001 (2)0.008 (2)0.005 (2)
C30.014 (3)0.022 (3)0.022 (3)−0.001 (2)0.002 (2)0.002 (2)
C40.016 (3)0.023 (3)0.034 (3)0.000 (2)0.003 (2)0.001 (2)
C50.024 (3)0.031 (3)0.037 (3)0.007 (3)0.005 (3)0.003 (3)
C60.016 (3)0.027 (3)0.018 (2)−0.004 (2)0.003 (2)−0.004 (2)
C70.028 (3)0.031 (3)0.039 (3)0.002 (3)0.012 (3)0.002 (3)
C80.023 (3)0.024 (3)0.040 (3)0.004 (2)0.006 (3)−0.005 (2)
C90.020 (3)0.021 (3)0.022 (3)0.001 (2)−0.001 (2)−0.001 (2)
C100.019 (3)0.034 (3)0.037 (3)−0.003 (3)0.007 (3)0.003 (3)
C110.021 (3)0.032 (3)0.044 (4)0.010 (3)0.001 (3)0.003 (3)
C120.022 (3)0.022 (3)0.025 (3)0.004 (2)0.006 (2)−0.003 (2)
C130.034 (3)0.034 (3)0.032 (3)−0.001 (3)0.009 (3)−0.006 (3)
C140.031 (3)0.030 (3)0.038 (3)−0.008 (3)0.009 (3)−0.008 (3)
C150.020 (3)0.013 (2)0.033 (3)−0.001 (2)0.004 (2)0.002 (2)
C160.031 (3)0.033 (3)0.023 (3)−0.003 (3)0.001 (2)0.000 (2)
C170.022 (3)0.036 (3)0.039 (3)−0.007 (3)0.000 (3)0.003 (3)
C180.024 (3)0.021 (3)0.024 (3)−0.006 (2)0.000 (2)−0.002 (2)
C190.018 (3)0.030 (3)0.038 (3)−0.004 (2)0.002 (3)0.003 (2)
C200.021 (3)0.028 (3)0.022 (3)0.002 (2)0.004 (2)0.001 (2)
C210.023 (3)0.028 (3)0.048 (4)0.004 (3)0.015 (3)−0.002 (3)
C220.021 (3)0.024 (3)0.032 (3)−0.004 (2)0.003 (2)0.001 (2)
C230.017 (3)0.029 (3)0.015 (2)−0.003 (2)0.005 (2)0.002 (2)
C240.018 (3)0.028 (3)0.025 (3)−0.001 (2)0.007 (2)0.003 (2)

Geometric parameters (Å, °)

Gd1—O12.357 (4)N4—C191.354 (8)
Gd1—O2i2.465 (4)N4—Ag1iii2.147 (5)
Gd1—O32.383 (4)C1—C21.388 (8)
Gd1—O52.393 (4)C1—H1A0.9300
Gd1—O72.399 (4)C2—C31.383 (8)
Gd1—O8i2.386 (4)C2—H2A0.9300
Gd1—O92.454 (4)C3—C41.395 (7)
Gd1—O102.533 (4)C3—C61.494 (7)
Ag1—N12.144 (5)C4—C51.377 (8)
Ag1—N4ii2.147 (5)C4—H4A0.9300
Ag2—N2iii2.189 (5)C5—H5A0.9300
Ag2—N32.199 (5)C7—C81.385 (9)
O1—C61.252 (7)C7—H7A0.9300
O2—C61.238 (7)C8—C91.386 (8)
O2—Gd1iv2.465 (4)C8—H8A0.9300
O3—C121.261 (7)C9—C101.378 (8)
O4—C121.227 (7)C9—C121.530 (8)
O5—C181.229 (7)C10—C111.374 (8)
O6—C181.238 (7)C10—H10B0.9300
O7—C241.253 (7)C11—H11A0.9300
O8—C241.251 (7)C13—C141.367 (9)
O8—Gd1iv2.386 (4)C13—H13A0.9300
O9—H9A0.8500C14—C151.387 (8)
O9—H9B0.8500C14—H14A0.9300
O10—H10C0.8500C15—C161.371 (8)
O10—H10A0.8500C15—C181.531 (8)
O11—N51.229 (9)C16—C171.370 (9)
O12—N51.208 (9)C16—H16A0.9300
O13—N51.244 (10)C17—H17A0.9300
O14—H14C0.8500C19—C201.377 (8)
O14—H14B0.8500C19—H19A0.9300
N1—C11.345 (8)C20—C231.377 (8)
N1—C51.348 (8)C20—H20A0.9300
N2—C71.331 (8)C21—C221.359 (9)
N2—C111.348 (8)C21—H21A0.9300
N2—Ag2ii2.189 (5)C22—C231.384 (8)
N3—C171.338 (8)C22—H22A0.9300
N3—C131.359 (8)C23—C241.512 (7)
N4—C211.354 (8)
O1—Gd1—O380.95 (15)C2—C3—C6121.5 (5)
O1—Gd1—O8i117.84 (16)C4—C3—C6120.4 (5)
O3—Gd1—O8i140.74 (14)C5—C4—C3120.1 (5)
O1—Gd1—O5144.27 (17)C5—C4—H4A120.0
O3—Gd1—O5101.65 (17)C3—C4—H4A120.0
O8i—Gd1—O582.71 (15)N1—C5—C4121.9 (6)
O1—Gd1—O777.42 (16)N1—C5—H5A119.1
O3—Gd1—O7145.32 (15)C4—C5—H5A119.1
O8i—Gd1—O773.87 (15)O2—C6—O1125.6 (5)
O5—Gd1—O781.52 (18)O2—C6—C3118.8 (5)
O1—Gd1—O976.97 (17)O1—C6—C3115.4 (5)
O3—Gd1—O973.28 (16)N2—C7—C8123.3 (6)
O8i—Gd1—O9141.49 (16)N2—C7—H7A118.4
O5—Gd1—O969.98 (15)C8—C7—H7A118.4
O7—Gd1—O975.62 (18)C9—C8—C7118.6 (6)
O1—Gd1—O2i71.51 (16)C9—C8—H8A120.7
O3—Gd1—O2i77.15 (14)C7—C8—H8A120.7
O8i—Gd1—O2i77.31 (14)C8—C9—C10118.9 (5)
O5—Gd1—O2i144.13 (14)C8—C9—C12120.6 (5)
O7—Gd1—O2i119.97 (15)C10—C9—C12120.5 (5)
O9—Gd1—O2i139.49 (14)C11—C10—C9118.6 (6)
O1—Gd1—O10141.58 (15)C11—C10—H10B120.7
O3—Gd1—O1071.24 (14)C9—C10—H10B120.7
O8i—Gd1—O1074.21 (14)N2—C11—C10123.5 (6)
O5—Gd1—O1069.25 (15)N2—C11—H11A118.2
O7—Gd1—O10138.84 (14)C10—C11—H11A118.2
O9—Gd1—O10117.66 (16)O4—C12—O3127.1 (5)
O2i—Gd1—O1076.74 (14)O4—C12—C9117.6 (5)
N4ii—Ag1—N1178.6 (2)O3—C12—C9115.3 (5)
N2iii—Ag2—N3147.1 (2)N3—C13—C14123.0 (6)
C6—O1—Gd1162.4 (4)N3—C13—H13A118.5
C6—O2—Gd1iv132.5 (3)C14—C13—H13A118.5
C12—O3—Gd1138.3 (4)C13—C14—C15119.3 (6)
C18—O5—Gd1146.4 (4)C13—C14—H14A120.3
C24—O7—Gd1161.8 (4)C15—C14—H14A120.3
C24—O8—Gd1iv137.2 (4)C16—C15—C14118.0 (5)
Gd1—O9—H9A99.5C16—C15—C18122.1 (5)
Gd1—O9—H9B127.5C14—C15—C18119.8 (5)
H9A—O9—H9B127.5C17—C16—C15119.6 (5)
Gd1—O10—H10C104.3C17—C16—H16A120.2
Gd1—O10—H10A121.4C15—C16—H16A120.2
H10C—O10—H10A104.5N3—C17—C16123.6 (6)
H14C—O14—H14B129.5N3—C17—H17A118.2
C1—N1—C5118.0 (5)C16—C17—H17A118.2
C1—N1—Ag1121.4 (4)O5—C18—O6127.3 (6)
C5—N1—Ag1120.6 (4)O5—C18—C15116.5 (5)
C7—N2—C11117.1 (5)O6—C18—C15116.2 (5)
C7—N2—Ag2ii121.6 (4)N4—C19—C20122.8 (5)
C11—N2—Ag2ii121.0 (4)N4—C19—H19A118.6
C17—N3—C13116.4 (5)C20—C19—H19A118.6
C17—N3—Ag2121.3 (4)C23—C20—C19118.9 (5)
C13—N3—Ag2122.2 (4)C23—C20—H20A120.5
C21—N4—C19116.7 (5)C19—C20—H20A120.5
C21—N4—Ag1iii122.2 (4)N4—C21—C22123.4 (6)
C19—N4—Ag1iii121.0 (4)N4—C21—H21A118.3
O12—N5—O11121.1 (9)C22—C21—H21A118.3
O12—N5—O13120.3 (7)C21—C22—C23119.0 (5)
O11—N5—O13118.4 (8)C21—C22—H22A120.5
N1—C1—C2123.3 (6)C23—C22—H22A120.5
N1—C1—H1A118.4C20—C23—C22118.9 (5)
C2—C1—H1A118.4C20—C23—C24120.2 (5)
C3—C2—C1118.6 (5)C22—C23—C24120.8 (5)
C3—C2—H2A120.7O7—C24—O8125.9 (5)
C1—C2—H2A120.7O7—C24—C23116.8 (5)
C2—C3—C4118.1 (5)O8—C24—C23117.2 (5)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, y, z; (iii) x−1, y, z; (iv) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H9A···O60.852.132.771 (7)132
O9—H9B···O2iv0.852.032.811 (6)153
O10—H10A···O6v0.852.122.954 (6)165
O10—H10C···O40.851.842.662 (6)162
O14—H14B···O12vi0.852.272.960 (9)139
O14—H14C···O13vii0.852.012.779 (10)151

Symmetry codes: (iv) x, −y+1/2, z−1/2; (v) x, y, z+1; (vi) x+1, −y+1/2, z−1/2; (vii) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2346).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cheng, J.-W., Zheng, S.-T., Ma, E. & Yang, G.-Y. (2007). Inorg. Chem.46, 10534–10538. [PubMed]
  • Cheng, J.-W., Zheng, S.-T. & Yang, G.-Y. (2008). Inorg. Chem.47, 4930–4935. [PubMed]
  • Fan, L.-Q. & Wu, J.-H. (2010). Acta Cryst. E66, m240. [PMC free article] [PubMed]
  • Fang, M., Zhao, B., Zuo, Y., Chen, J., Shi, W., Liang, J. & Cheng, P. (2009). Dalton Trans. pp. 7765–7770. [PubMed]
  • Luo, F., Hu, D.-X., Xue, L., Che, Y.-X. & Zheng, J.-M. (2007). Cryst. Growth Des.7, 851–853.
  • Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography