PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2689.
Published online 2010 September 30. doi:  10.1107/S1600536810037931
PMCID: PMC2983373

2-Bromo-4-chloro-6-[(E)-o-tolyl­imino­meth­yl]phenol

Abstract

The title compound, C14H11BrClNO, is a Schiff base compound derived from the condensation of 3-bromo-5-chloro­salicyl­aldehyde and o-toluidine in methanol. The aromatic rings make a dihedral angle of 38.3 (1)°. The mol­ecular conformation is stabilized by an intra­molecular O—H(...)N hydrogen bond, generating an S(6) ring.

Related literature

For Schiff bases, see: Ali et al. (2002 [triangle]). For related structures, see: Li & Zhang (2005 [triangle], 2006 [triangle]); Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2689-scheme1.jpg

Experimental

Crystal data

  • C14H11BrClNO
  • M r = 324.60
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2689-efi1.jpg
  • a = 7.5388 (9) Å
  • b = 12.2452 (11) Å
  • c = 14.2440 (16) Å
  • V = 1314.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.32 mm−1
  • T = 298 K
  • 0.40 × 0.38 × 0.33 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.351, T max = 0.408
  • 5422 measured reflections
  • 2284 independent reflections
  • 1815 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.057
  • S = 1.09
  • 2284 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.33 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 938 Friedel pairs
  • Flack parameter: 0.006 (10)

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037931/bt5360sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037931/bt5360Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by a research grant (No. 09JS068) from the Phytochemistry Key Laboratory of Shaanxi Province.

supplementary crystallographic information

Comment

The roles of Schiff base compounds in biological processes have become a topic of study in recent years. Schiff base compounds have demonstrated significant biological activity and new examples are being tested for their antitumor, antimicrobial, and antiviral activity (Ali et al., 2002). In the past years, we have prepared a series of Schiff base cmpounds, and investigated their structure and properties (Li et al., 2006; Li & Zhang, 2006; Li & Zhang, 2005).

In the title compound (Fig. 1), all the bond lengths and angles are within normal value and are comparable to those observed in a similar Schiff base compound (Li & Zhang, 2005). The two aromatic rings are linked by a C ═N bond and enclose a dihedral angle of 38.3 (1) °. As expected, the molecule adopts a trans configuration about the C1 ═N1 bond. The molecular conformation is stabilized by an intramolecular O—H–N hydrogen bond (Table 1).

Experimental

3-bromo-5-Chlorosalicylaldehyde (0.1 mmol, 23.5 mg) and o-toluidine (0.1 mmol, 10.7 mg) dissolved in MeOH (10 ml). The solution was stirred for half an hour and then filtered. Crystals of the title compound suitable for single-crystal X-ray analysis were recrystallized from methanol after one weeks at room temperature. The yellow block precipitate was filtered, washed with cold MeOH, and dried in vacuo for 48 h (yield 70%).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis.

Crystal data

C14H11BrClNODx = 1.640 Mg m3
Mr = 324.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2013 reflections
a = 7.5388 (9) Åθ = 2.2–23.7°
b = 12.2452 (11) ŵ = 3.32 mm1
c = 14.2440 (16) ÅT = 298 K
V = 1314.9 (2) Å3Block, yellow
Z = 40.40 × 0.38 × 0.33 mm
F(000) = 648

Data collection

Bruker SMART CCD area-detector diffractometer2284 independent reflections
Radiation source: fine-focus sealed tube1815 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −8→8
Tmin = 0.351, Tmax = 0.408k = −14→14
5422 measured reflectionsl = −16→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.057w = 1/[σ2(Fo2) + (0.0039P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2284 reflectionsΔρmax = 0.25 e Å3
164 parametersΔρmin = −0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), 938 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.006 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.04915 (6)0.84654 (3)−0.29615 (2)0.06176 (15)
Cl10.26999 (17)1.17472 (7)−0.05785 (7)0.0692 (3)
N10.1302 (3)0.6835 (2)0.05868 (17)0.0362 (7)
O10.0835 (3)0.71558 (18)−0.11917 (15)0.0500 (7)
H10.09290.6804−0.07040.075*
C10.1777 (5)0.7832 (3)0.0667 (2)0.0388 (9)
H1A0.21360.80930.12500.047*
C20.1770 (4)0.8568 (3)−0.0137 (2)0.0339 (8)
C30.1263 (4)0.8203 (3)−0.1027 (2)0.0376 (9)
C40.1196 (5)0.8952 (3)−0.1764 (2)0.0400 (9)
C50.1624 (5)1.0029 (3)−0.1627 (2)0.0450 (10)
H50.15541.0522−0.21220.054*
C60.2160 (5)1.0382 (3)−0.0746 (2)0.0447 (10)
C70.2229 (5)0.9665 (3)−0.0010 (2)0.0408 (9)
H70.25830.99090.05790.049*
C80.1220 (5)0.6153 (3)0.1403 (2)0.0364 (9)
C90.1705 (5)0.5059 (3)0.1305 (2)0.0360 (9)
C100.1639 (5)0.4404 (3)0.2096 (3)0.0477 (9)
H100.19930.36780.20530.057*
C110.1059 (5)0.4805 (3)0.2947 (3)0.0516 (11)
H110.10140.43480.34670.062*
C120.0553 (5)0.5866 (3)0.3027 (2)0.0478 (9)
H120.01630.61330.36020.057*
C130.0618 (5)0.6549 (3)0.22552 (19)0.0415 (8)
H130.02590.72730.23090.050*
C140.2313 (6)0.4607 (3)0.0376 (2)0.0600 (12)
H14A0.25890.38450.04450.090*
H14B0.33520.49930.01710.090*
H14C0.13870.4692−0.00810.090*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0701 (3)0.0765 (3)0.03869 (18)0.0032 (3)−0.0065 (2)0.0004 (2)
Cl10.1052 (9)0.0331 (5)0.0692 (6)−0.0064 (6)−0.0041 (6)0.0075 (5)
N10.0390 (18)0.0323 (16)0.0372 (15)−0.0012 (14)0.0006 (13)0.0021 (14)
O10.064 (2)0.0434 (14)0.0423 (13)−0.0024 (13)−0.0035 (13)−0.0011 (11)
C10.034 (2)0.045 (2)0.038 (2)0.0001 (18)0.0003 (18)0.0037 (18)
C20.035 (2)0.033 (2)0.0335 (17)0.0014 (19)0.0021 (15)0.0014 (18)
C30.033 (2)0.034 (2)0.046 (2)0.0048 (17)0.0093 (16)−0.0010 (18)
C40.036 (2)0.050 (2)0.034 (2)0.0074 (18)0.0019 (16)0.0027 (17)
C50.045 (3)0.050 (2)0.040 (2)0.009 (2)0.0088 (19)0.0144 (19)
C60.045 (3)0.038 (2)0.050 (2)0.001 (2)0.0066 (19)0.006 (2)
C70.045 (3)0.041 (2)0.0354 (19)−0.002 (2)0.0011 (17)0.0011 (18)
C80.038 (2)0.036 (2)0.0354 (19)−0.0042 (16)−0.0018 (16)0.0049 (16)
C90.039 (2)0.030 (2)0.0396 (19)−0.0054 (18)−0.0004 (18)0.0001 (17)
C100.052 (3)0.033 (2)0.058 (2)−0.0044 (18)−0.001 (2)0.004 (2)
C110.063 (3)0.051 (3)0.041 (2)−0.010 (2)−0.006 (2)0.017 (2)
C120.054 (3)0.053 (2)0.0363 (19)−0.012 (2)0.005 (2)0.0002 (19)
C130.049 (2)0.0355 (19)0.0402 (18)0.002 (2)0.0055 (17)−0.0007 (17)
C140.075 (3)0.050 (2)0.055 (2)0.000 (3)0.015 (2)0.000 (2)

Geometric parameters (Å, °)

Br1—C41.883 (3)C7—H70.9300
Cl1—C61.737 (4)C8—C131.383 (4)
N1—C11.277 (4)C8—C91.395 (4)
N1—C81.433 (4)C9—C101.385 (4)
O1—C31.343 (4)C9—C141.506 (5)
O1—H10.8200C10—C111.378 (5)
C1—C21.458 (4)C10—H100.9300
C1—H1A0.9300C11—C121.359 (5)
C2—C71.398 (5)C11—H110.9300
C2—C31.398 (4)C12—C131.382 (4)
C3—C41.394 (4)C12—H120.9300
C4—C51.373 (5)C13—H130.9300
C5—C61.386 (4)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.368 (4)C14—H14C0.9600
C1—N1—C8119.8 (3)C13—C8—N1121.5 (3)
C3—O1—H1109.5C9—C8—N1117.8 (3)
N1—C1—C2121.3 (3)C10—C9—C8117.7 (3)
N1—C1—H1A119.3C10—C9—C14120.8 (3)
C2—C1—H1A119.3C8—C9—C14121.4 (3)
C7—C2—C3119.4 (3)C11—C10—C9121.3 (3)
C7—C2—C1119.5 (3)C11—C10—H10119.3
C3—C2—C1121.1 (3)C9—C10—H10119.3
O1—C3—C4119.2 (3)C12—C11—C10120.2 (3)
O1—C3—C2121.9 (3)C12—C11—H11119.9
C4—C3—C2118.9 (3)C10—C11—H11119.9
C5—C4—C3121.0 (3)C11—C12—C13120.1 (3)
C5—C4—Br1120.0 (3)C11—C12—H12119.9
C3—C4—Br1119.0 (3)C13—C12—H12119.9
C4—C5—C6119.8 (3)C12—C13—C8119.8 (3)
C4—C5—H5120.1C12—C13—H13120.1
C6—C5—H5120.1C8—C13—H13120.1
C7—C6—C5120.3 (3)C9—C14—H14A109.5
C7—C6—Cl1120.2 (3)C9—C14—H14B109.5
C5—C6—Cl1119.5 (3)H14A—C14—H14B109.5
C6—C7—C2120.5 (3)C9—C14—H14C109.5
C6—C7—H7119.7H14A—C14—H14C109.5
C2—C7—H7119.7H14B—C14—H14C109.5
C13—C8—C9120.7 (3)
C8—N1—C1—C2−176.1 (3)Cl1—C6—C7—C2179.0 (3)
N1—C1—C2—C7177.3 (3)C3—C2—C7—C60.9 (5)
N1—C1—C2—C3−0.9 (5)C1—C2—C7—C6−177.3 (3)
C7—C2—C3—O1179.0 (3)C1—N1—C8—C1338.4 (5)
C1—C2—C3—O1−2.8 (5)C1—N1—C8—C9−144.0 (3)
C7—C2—C3—C4−1.3 (5)C13—C8—C9—C10−2.8 (5)
C1—C2—C3—C4176.9 (3)N1—C8—C9—C10179.5 (3)
O1—C3—C4—C5−180.0 (3)C13—C8—C9—C14178.3 (3)
C2—C3—C4—C50.3 (5)N1—C8—C9—C140.6 (5)
O1—C3—C4—Br10.4 (4)C8—C9—C10—C112.1 (5)
C2—C3—C4—Br1−179.4 (3)C14—C9—C10—C11−179.0 (3)
C3—C4—C5—C61.1 (5)C9—C10—C11—C12−0.7 (6)
Br1—C4—C5—C6−179.3 (3)C10—C11—C12—C130.0 (6)
C4—C5—C6—C7−1.4 (6)C11—C12—C13—C8−0.8 (6)
C4—C5—C6—Cl1180.0 (3)C9—C8—C13—C122.2 (6)
C5—C6—C7—C20.4 (5)N1—C8—C13—C12179.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.588 (3)147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5360).

References

  • Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Keat, T. B. (2002). J. Inorg. Biochem.92, 141–148. [PubMed]
  • Bruker (2003). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Li, Z. X. & Zhang, X. L. (2005). Chin. J. Struct. Chem.11, 1310–1313.
  • Li, Z.-X. & Zhang, X.-L. (2006). Acta Cryst. E62, o1738–o1739.
  • Li, Z.-X., Zhang, X.-L. & Wang, X.-L. (2006). Acta Cryst. E62, o4513–o4514.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography