PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2585–o2586.
Published online 2010 September 18. doi:  10.1107/S1600536810036664
PMCID: PMC2983369

9-O-Ethyl­berberrubinium iodide monohydrate

Abstract

In the title compound (systematic name: 9-eth­oxy-10-meth­oxy-5,6-dihydro-1,3-dioxolo[4,5-g]isoquinolino­[3,2-a]isoquin­olin-7-ium iodide monohydrate), 2C21H20NO4 +·2I·H2O, two independent mol­ecules pack in the unit cell, where interactions between the molecules are stabilized by weak inter­molecular π–π stacking inter­actions [centroid–centroid distances in the range 3.571 (4) to 3.815 (4)Å]. Inter­molecular C—H(...)O inter­actions are also observed. The iodide anions are disordered with occupancy ratios of 0.94 (1):0.06 (1) and 0.91 (1):0.09 (1). The cationic molecule is planar in structure with a small torsion resulting from the dihydropyridine ring.

Related literature

For the synthesis of the title compound, see: Iwasa et al. (1997 [triangle]). The title compound is a derivative of the natural product berberine. For the anti-parasitic activity of berberine and its derivatives, see: Nkwengoua et al. (2009 [triangle]); Acero et al. (1995 [triangle]); Ghosh et al. (1985 [triangle]); Wright et al. (2000 [triangle]); Iwasa et al. (1998 [triangle]); Sheng et al. 1997 [triangle]); McCall et al. (1994 [triangle]). For a related structure, see: Chen et al. (2009 [triangle]). For the Chebychev weighting scheme, see: Prince (1982 [triangle]); Watkin (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2585-scheme1.jpg

Experimental

Crystal data

  • 2C21H20NO4 +·2I·H2O
  • M r = 972.61
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2585-efi1.jpg
  • a = 11.036 (3) Å
  • b = 13.449 (4) Å
  • c = 14.086 (4) Å
  • α = 80.442 (6)°
  • β = 71.121 (5)°
  • γ = 76.875 (5)°
  • V = 1916.8 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.70 mm−1
  • T = 93 K
  • 1.00 × 0.10 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID II image plate diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.469, T max = 0.712
  • 50086 measured reflections
  • 8751 independent reflections
  • 4563 reflections with I > 2.0σ(I)
  • R int = 0.101

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.195
  • S = 0.96
  • 8751 reflections
  • 502 parameters
  • 12 restraints
  • All H-atom parameters refined
  • Δρmax = 1.75 e Å−3
  • Δρmin = −2.26 e Å−3

Data collection: CrystalClear (Rigaku, 2009 [triangle]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997 [triangle]); data reduction: CrystalClear; program(s) used to solve structure: CrystalStructure (Rigaku, 2009 [triangle]) and SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036664/jj2056sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036664/jj2056Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by the University of Minnesota Undergraduate Research Opportunities Program (UROP) and the NSF (grant CHE-0922366 for the X-ray diffractometer).

supplementary crystallographic information

Comment

The title compound, a derivative of the natural product berberine, is of interest with respect to its anti-parasite activity and biological properties Chen et al. (2009). Of particular interest is the discovery that berberine and its analogs inhibit the growth of strains of the parasites Leishmania (Nkwengoua et al., 2009, Acero et al., 1995, Ghosh et al., 1985), Trypanosoma (Nkwengoua et al., 2009), and Plasmodium (Wright et al., 2000, Iwasa et al., 1998, Sheng et al., 1997, McCall et al., 1994). Based on these findings and in our continued effort to characterize compounds that may inhibit the life cycle of the parasite Toxoplasma gondii we have synthesized the 9-ethyl analog of berberine.

The title compound, 2(C21H20NO4+), 2(I-), H2O, crystallizes in the P-1 space group with two independent molecules in the unit cell. A solvent water molecule occupies the lattice at H-bonding distance from the disordered iodide (1.94 & 0.06) anions [O5—I1A 3.509 (6) and O5—I1B 3.600 (6) Å]. The compound crystallizes with a slightly twisted planar structure due to the dihydropyridine moiety, which results in torsion angles of 17.7 (5)° (C15A/C16A/C11A/C2A) and 6.1 (5)° (C15B/C16B/C11B/C2B) between the planes of the isoquiniline and benzodioxole moieties for molecules A and B respectively. The molecules are layered in the crystal lattice with normal π—π stacking distances between centroids of the rings of molecules A and B of 3.571 (4)Å (rings C6A/C7A/C8A/C9A/C15A/C16A to C2B/C11B/C12B/C13B/C14B/C18B), 3.839 (4)Å (rings N1A/C5A/C10A/C15A/C16A/C17A to N1B/C5B/C10B/C15B/C16B/C17B), and 3.686 (4)Å (rings C2A/C11A/C12A/C13A/C14A/C18A to C6B/C7B/C8B/C9B/C15B/C16B). Identical molecules neighboring each other are located at further stacking distances with the closest controid distance of 3.815 (4)Å between molecules A to A and 3.949 (4)Å between molecules B to B.

Experimental

The title compound was prepared by vacuum pyrolysis of berberine hydrochloride followed by alkylation with ethyl iodide (Iwasa et al., 1997). The crystals suitable for single-crystal X-ray diffraction were grown in DMSO-d6. The crystal was diffracted in the cold stream of an X-Stream 2000 Liquid nitrogen generator with an open-flow nitrogen cryostat with a nominal stability of 0.1 K.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The ethyl groups on the molecules were found to have some disorder, with the methylene carbon (C20B) demonstrating the largest thermal parameters. The disordered iodide anions were solved with two partially occupied positions. The anisotropic parameters Uxy were restrained for each of the iodide pairs during refinement.

Figures

Fig. 1.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. H atom labels are omitted from molecule B for clarity.
Fig. 2.
The packing diagram of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Crystal data

2C21H20NO4+·2I·H2OZ = 2
Mr = 972.61F(000) = 972
Triclinic, P1Dx = 1.685 Mg m3
Hall symbol: -P 1Melting point: 257 K
a = 11.036 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.449 (4) ÅCell parameters from 50086 reflections
c = 14.086 (4) Åθ = 3–27.5°
α = 80.442 (6)°µ = 1.70 mm1
β = 71.121 (5)°T = 93 K
γ = 76.875 (5)°Needle, yellow
V = 1916.8 (9) Å31.00 × 0.10 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID II image plate diffractometer8751 independent reflections
Radiation source: Mo sealed tube4563 reflections with I > 2.0σ(I)
graphiteRint = 0.101
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −14→14
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −17→17
Tmin = 0.469, Tmax = 0.712l = −18→18
50086 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195All H-atom parameters refined
S = 0.96 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 4.85 6.23 1.54
8751 reflections(Δ/σ)max = 0.001
502 parametersΔρmax = 1.75 e Å3
12 restraintsΔρmin = −2.26 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O1A0.7061 (5)0.4522 (4)0.7015 (4)0.0527
C1A0.5927 (8)0.5331 (6)0.7096 (6)0.0517
O2A0.5226 (6)0.5086 (4)0.6480 (4)0.0577
C2A0.5222 (8)0.3441 (6)0.5954 (6)0.0554
C3A0.5468 (8)0.1682 (6)0.5415 (6)0.0552
C4A0.5678 (7)0.0617 (6)0.5900 (6)0.0511
N1A0.7020 (5)0.0278 (4)0.5983 (4)0.0413
C5A0.7560 (7)−0.0722 (5)0.5920 (5)0.0413
C6A0.9343 (6)−0.2175 (5)0.6016 (5)0.0401
C7A1.0547 (7)−0.2531 (5)0.6186 (5)0.0436
C8A1.1203 (6)−0.1848 (5)0.6375 (5)0.0417
C9A1.0685 (7)−0.0817 (5)0.6410 (5)0.0440
C10A0.8835 (6)0.0610 (5)0.6336 (5)0.0398
C11A0.7418 (7)0.2722 (5)0.6670 (5)0.0462
C12A0.6771 (7)0.3709 (5)0.6694 (5)0.0437
C13A0.5686 (7)0.4057 (6)0.6358 (6)0.0490
C14A0.5878 (7)0.2405 (5)0.5902 (5)0.0438
C15A0.8781 (6)−0.1118 (5)0.6061 (4)0.0392
C16A0.9456 (6)−0.0429 (5)0.6270 (5)0.0411
C17A0.7628 (6)0.0966 (5)0.6204 (4)0.0378
C18A0.6934 (6)0.2049 (5)0.6268 (5)0.0406
O3A1.1012 (5)−0.3557 (4)0.6163 (4)0.0471
O4A0.8648 (5)−0.2821 (3)0.5852 (3)0.0428
C19A1.2226 (8)−0.3942 (5)0.6361 (6)0.0497
C20A0.9150 (8)−0.3152 (6)0.4853 (5)0.0531
C21A0.8288 (9)−0.3797 (7)0.4743 (7)0.0662
O1B0.7780 (5)−0.4304 (3)0.8199 (4)0.0481
C1B0.8993 (7)−0.5023 (5)0.7914 (6)0.0507
O2B0.9851 (5)−0.4741 (4)0.8366 (4)0.0528
C2B0.9914 (7)−0.3031 (6)0.8764 (5)0.0471
C3B0.9793 (7)−0.1200 (5)0.9045 (5)0.0463
C4B0.8775 (7)−0.0374 (5)0.9633 (6)0.0468
N1B0.7687 (5)−0.0013 (4)0.9196 (4)0.0390
C5B0.7139 (7)0.0966 (5)0.9225 (5)0.0442
C6B0.5421 (7)0.2398 (5)0.8997 (5)0.0433
C7B0.4229 (6)0.2745 (5)0.8790 (5)0.0423
C8B0.3624 (6)0.2055 (5)0.8563 (5)0.0412
C9B0.4177 (6)0.1029 (5)0.8509 (5)0.0399
C10B0.6057 (6)−0.0366 (5)0.8629 (4)0.0368
C11B0.7373 (6)−0.2504 (5)0.8535 (5)0.0415
C12B0.8119 (6)−0.3468 (5)0.8398 (5)0.0407
C13B0.9343 (7)−0.3723 (5)0.8522 (5)0.0449
C14B0.9186 (6)−0.2035 (5)0.8885 (5)0.0433
C15B0.5975 (6)0.1356 (5)0.8969 (5)0.0399
C16B0.5391 (6)0.0654 (5)0.8706 (4)0.0363
C17B0.7212 (6)−0.0725 (5)0.8861 (4)0.0371
C18B0.7938 (6)−0.1769 (5)0.8779 (5)0.0400
O4B0.6121 (5)0.3048 (4)0.9131 (4)0.0498
O3B0.3732 (5)0.3765 (4)0.8823 (4)0.0489
C19B0.2472 (8)0.4115 (6)0.8666 (7)0.0569
C20B0.5681 (9)0.3468 (11)1.0051 (8)0.0893
C21B0.6740 (9)0.3896 (8)1.0199 (6)0.0634
O51.2817 (6)0.0700 (5)0.6183 (4)0.0635
I1A1.02838 (5)0.19860 (3)0.80552 (4)0.04470.9379
I1A'1.1037 (7)0.1783 (5)0.7437 (6)0.04470.0621
I1B1.39483 (6)−0.16491 (4)0.75430 (5)0.05200.9057
I1B'1.4616 (6)−0.1882 (4)0.7030 (5)0.05200.0943
H1A0.61870.59930.68530.0619*
H2A0.53800.53270.77900.0618*
H3A0.44990.36820.57180.0661*
H4A0.59660.16950.47070.0661*
H5A0.45420.18890.54830.0663*
H6A0.50420.05900.65710.0612*
H7A0.55600.01570.54900.0607*
H8A0.7107−0.11570.57750.0495*
H9A1.2018−0.20980.64740.0498*
H10A1.1145−0.03680.65240.0527*
H11A0.92610.10640.64790.0480*
H12A0.81430.25010.69090.0558*
H13A1.2430−0.46790.63570.0750*
H14A1.2168−0.37590.70070.0748*
H15A1.2896−0.36460.58520.0749*
H16A1.0021−0.35680.47840.0636*
H17A0.9200−0.25620.43420.0642*
H18A0.8548−0.39580.40570.0992*
H19A0.8354−0.44220.51840.0988*
H20A0.7397−0.34320.49280.0989*
H1B0.8849−0.57160.81670.0610*
H2B0.9354−0.49720.71830.0609*
H3B1.0747−0.32110.88370.0571*
H4B1.0408−0.14940.94270.0559*
H5B1.0244−0.08780.83840.0558*
H6B0.8441−0.06681.03230.0558*
H7B0.91720.02000.96220.0559*
H8B0.75350.14100.94150.0528*
H9B0.28160.23010.84480.0488*
H10B0.37540.05860.83420.0478*
H11B0.5706−0.08170.84110.0439*
H12B0.6540−0.23400.84650.0500*
H13B0.22360.48430.87000.0849*
H14B0.18340.37760.91780.0848*
H15B0.25060.39660.80110.0848*
H16B0.54280.29421.05900.1070*
H17B0.49370.40111.00520.1071*
H18B0.64220.41941.08290.0951*
H19B0.74680.33561.02060.0951*
H20B0.69970.44130.96530.0949*
H211.21900.09500.67400.0941*
H221.29160.01050.65020.0944*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.058 (3)0.040 (2)0.063 (3)−0.006 (2)−0.024 (2)−0.005 (2)
C1A0.055 (4)0.042 (3)0.061 (4)−0.003 (3)−0.022 (3)−0.010 (3)
O2A0.065 (3)0.045 (3)0.069 (3)0.000 (2)−0.028 (3)−0.019 (2)
C2A0.059 (4)0.055 (4)0.062 (4)−0.004 (3)−0.033 (4)−0.015 (3)
C3A0.055 (4)0.059 (4)0.059 (4)−0.011 (3)−0.022 (3)−0.013 (3)
C4A0.044 (3)0.053 (4)0.065 (4)−0.019 (3)−0.024 (3)−0.002 (3)
N1A0.045 (3)0.043 (3)0.041 (3)−0.013 (2)−0.016 (2)−0.006 (2)
C5A0.048 (3)0.045 (3)0.038 (3)−0.018 (3)−0.017 (3)−0.004 (2)
C6A0.048 (3)0.038 (3)0.040 (3)−0.011 (3)−0.015 (3)−0.009 (2)
C7A0.052 (4)0.042 (3)0.041 (3)−0.012 (3)−0.017 (3)−0.005 (2)
C8A0.043 (3)0.046 (3)0.041 (3)−0.010 (3)−0.018 (3)−0.003 (3)
C9A0.052 (4)0.048 (3)0.041 (3)−0.018 (3)−0.018 (3)−0.009 (3)
C10A0.041 (3)0.044 (3)0.041 (3)−0.006 (3)−0.020 (3)−0.010 (2)
C11A0.055 (4)0.041 (3)0.050 (4)−0.017 (3)−0.022 (3)−0.001 (3)
C12A0.051 (4)0.045 (3)0.038 (3)−0.016 (3)−0.014 (3)−0.004 (2)
C13A0.052 (4)0.048 (4)0.050 (4)−0.004 (3)−0.018 (3)−0.013 (3)
C14A0.044 (3)0.043 (3)0.048 (3)−0.006 (3)−0.016 (3)−0.011 (3)
C15A0.048 (3)0.042 (3)0.032 (3)−0.013 (3)−0.013 (2)−0.006 (2)
C16A0.047 (3)0.046 (3)0.033 (3)−0.015 (3)−0.013 (3)−0.003 (2)
C17A0.041 (3)0.042 (3)0.035 (3)−0.009 (2)−0.014 (2)−0.007 (2)
C18A0.042 (3)0.046 (3)0.037 (3)−0.010 (3)−0.015 (3)−0.006 (2)
O3A0.053 (3)0.040 (2)0.055 (3)−0.007 (2)−0.024 (2)−0.008 (2)
O4A0.051 (3)0.041 (2)0.044 (2)−0.016 (2)−0.017 (2)−0.0088 (18)
C19A0.058 (4)0.038 (3)0.058 (4)−0.002 (3)−0.027 (3)−0.008 (3)
C20A0.054 (4)0.068 (5)0.046 (4)−0.016 (3)−0.016 (3)−0.019 (3)
C21A0.067 (5)0.075 (5)0.066 (5)−0.034 (4)−0.009 (4)−0.027 (4)
O1B0.046 (2)0.033 (2)0.071 (3)−0.0049 (19)−0.026 (2)−0.011 (2)
C1B0.046 (4)0.038 (3)0.068 (4)0.000 (3)−0.021 (3)−0.011 (3)
O2B0.056 (3)0.039 (2)0.070 (3)0.001 (2)−0.026 (3)−0.020 (2)
C2B0.045 (3)0.054 (4)0.046 (3)−0.002 (3)−0.017 (3)−0.017 (3)
C3B0.042 (3)0.050 (4)0.053 (4)−0.006 (3)−0.019 (3)−0.015 (3)
C4B0.050 (4)0.043 (3)0.058 (4)−0.004 (3)−0.030 (3)−0.013 (3)
N1B0.035 (2)0.044 (3)0.047 (3)−0.010 (2)−0.021 (2)−0.007 (2)
C5B0.049 (4)0.041 (3)0.050 (3)−0.014 (3)−0.020 (3)−0.007 (3)
C6B0.047 (3)0.039 (3)0.048 (3)−0.011 (3)−0.017 (3)−0.008 (3)
C7B0.042 (3)0.041 (3)0.044 (3)−0.006 (3)−0.012 (3)−0.010 (3)
C8B0.042 (3)0.042 (3)0.043 (3)−0.005 (3)−0.017 (3)−0.008 (2)
C9B0.042 (3)0.044 (3)0.042 (3)−0.012 (3)−0.020 (3)−0.008 (2)
C10B0.040 (3)0.039 (3)0.039 (3)−0.010 (2)−0.018 (2)−0.008 (2)
C11B0.044 (3)0.034 (3)0.050 (3)−0.008 (2)−0.019 (3)−0.003 (2)
C12B0.042 (3)0.035 (3)0.049 (3)−0.012 (2)−0.015 (3)−0.005 (2)
C13B0.049 (4)0.042 (3)0.047 (3)−0.002 (3)−0.020 (3)−0.009 (3)
C14B0.042 (3)0.051 (4)0.044 (3)−0.011 (3)−0.017 (3)−0.012 (3)
C15B0.044 (3)0.041 (3)0.040 (3)−0.012 (3)−0.016 (3)−0.007 (2)
C16B0.033 (3)0.042 (3)0.037 (3)−0.009 (2)−0.010 (2)−0.009 (2)
C17B0.039 (3)0.042 (3)0.037 (3)−0.011 (2)−0.016 (2)−0.008 (2)
C18B0.043 (3)0.041 (3)0.041 (3)−0.010 (3)−0.017 (3)−0.006 (2)
O4B0.054 (3)0.045 (2)0.055 (3)−0.017 (2)−0.012 (2)−0.017 (2)
O3B0.053 (3)0.036 (2)0.062 (3)−0.004 (2)−0.024 (2)−0.008 (2)
C19B0.062 (5)0.045 (4)0.071 (5)0.001 (3)−0.035 (4)−0.010 (3)
C20B0.062 (5)0.154 (11)0.070 (6)−0.041 (6)−0.002 (4)−0.068 (7)
C21B0.062 (5)0.092 (6)0.049 (4)−0.036 (5)−0.019 (4)−0.010 (4)
O50.060 (3)0.081 (4)0.054 (3)−0.023 (3)−0.017 (3)−0.006 (3)
I1A0.0507 (3)0.0426 (2)0.0484 (3)−0.01080 (19)−0.0248 (2)−0.00267 (18)
I1A'0.0507 (3)0.0426 (2)0.0484 (3)−0.01080 (19)−0.0248 (2)−0.00267 (18)
I1B0.0614 (3)0.0476 (3)0.0631 (3)−0.0168 (2)−0.0366 (3)−0.0039 (2)
I1B'0.0614 (3)0.0476 (3)0.0631 (3)−0.0168 (2)−0.0366 (3)−0.0039 (2)

Geometric parameters (Å, °)

O1A—C1A1.446 (9)O1B—C12B1.358 (7)
O1A—C12A1.386 (8)C1B—O2B1.441 (9)
C1A—O2A1.450 (9)C1B—H1B0.971
C1A—H1A0.972C1B—H2B0.972
C1A—H2A0.968O2B—C13B1.382 (8)
O2A—C13A1.381 (9)C2B—C13B1.374 (10)
C2A—C13A1.345 (10)C2B—C14B1.404 (10)
C2A—C14A1.419 (10)C2B—H3B0.930
C2A—H3A0.934C3B—C4B1.523 (10)
C3A—C4A1.483 (11)C3B—C14B1.511 (9)
C3A—C14A1.497 (10)C3B—H4B0.975
C3A—H4A0.969C3B—H5B0.982
C3A—H5A0.974C4B—N1B1.472 (8)
C4A—N1A1.485 (9)C4B—H6B0.971
C4A—H6A0.978C4B—H7B0.967
C4A—H7A0.967N1B—C5B1.319 (8)
N1A—C5A1.347 (9)N1B—C17B1.398 (7)
N1A—C17A1.383 (8)C5B—C15B1.409 (9)
C5A—C15A1.396 (9)C5B—H8B0.932
C5A—H8A0.935C6B—C7B1.399 (9)
C6A—C7A1.390 (9)C6B—C15B1.398 (9)
C6A—C15A1.420 (9)C6B—O4B1.362 (8)
C6A—O4A1.370 (7)C7B—C8B1.388 (9)
C7A—C8A1.396 (9)C7B—O3B1.359 (8)
C7A—O3A1.360 (8)C8B—C9B1.379 (9)
C8A—C9A1.376 (10)C8B—H9B0.934
C8A—H9A0.933C9B—C16B1.420 (8)
C9A—C16A1.403 (9)C9B—H10B0.934
C9A—H10A0.933C10B—C16B1.406 (8)
C10A—C16A1.414 (9)C10B—C17B1.379 (8)
C10A—C17A1.371 (8)C10B—H11B0.925
C10A—H11A0.930C11B—C12B1.375 (9)
C11A—C12A1.357 (10)C11B—C18B1.419 (8)
C11A—C18A1.418 (9)C11B—H12B0.930
C11A—H12A0.935C12B—C13B1.377 (9)
C12A—C13A1.383 (10)C14B—C18B1.393 (9)
C14A—C18A1.381 (9)C15B—C16B1.410 (8)
C15A—C16A1.429 (8)C17B—C18B1.452 (9)
C17A—C18A1.486 (9)O4B—C20B1.395 (9)
O3A—C19A1.421 (9)O3B—C19B1.439 (9)
O4A—C20A1.441 (8)C19B—H13B0.959
C19A—H13A0.966C19B—H14B0.966
C19A—H14A0.960C19B—H15B0.963
C19A—H15A0.957C20B—C21B1.497 (11)
C20A—C21A1.481 (10)C20B—H16B0.963
C20A—H16A0.980C20B—H17B0.967
C20A—H17A0.978C21B—H18B0.961
C21A—H18A0.962C21B—H19B0.955
C21A—H19A0.962C21B—H20B0.962
C21A—H20A0.967O5—H210.916
O1B—C1B1.443 (8)O5—H220.852
C1A—O1A—C12A105.6 (5)O1B—C1B—O2B106.1 (5)
O1A—C1A—O2A105.9 (5)O1B—C1B—H1B109.9
O1A—C1A—H1A110.5O2B—C1B—H1B110.5
O2A—C1A—H1A110.8O1B—C1B—H2B109.9
O1A—C1A—H2A109.7O2B—C1B—H2B110.6
O2A—C1A—H2A109.2H1B—C1B—H2B109.7
H1A—C1A—H2A110.6C1B—O2B—C13B104.1 (5)
C1A—O2A—C13A105.2 (5)C13B—C2B—C14B116.8 (6)
C13A—C2A—C14A117.2 (7)C13B—C2B—H3B121.8
C13A—C2A—H3A121.7C14B—C2B—H3B121.4
C14A—C2A—H3A121.1C4B—C3B—C14B111.8 (6)
C4A—C3A—C14A111.6 (6)C4B—C3B—H4B107.8
C4A—C3A—H4A109.2C14B—C3B—H4B109.7
C14A—C3A—H4A109.2C4B—C3B—H5B108.5
C4A—C3A—H5A107.5C14B—C3B—H5B108.9
C14A—C3A—H5A109.6H4B—C3B—H5B110.2
H4A—C3A—H5A109.8C3B—C4B—N1B111.1 (5)
C3A—C4A—N1A112.0 (6)C3B—C4B—H6B108.1
C3A—C4A—H6A108.0N1B—C4B—H6B109.0
N1A—C4A—H6A110.1C3B—C4B—H7B109.5
C3A—C4A—H7A108.9N1B—C4B—H7B109.1
N1A—C4A—H7A107.2H6B—C4B—H7B110.0
H6A—C4A—H7A110.7C4B—N1B—C5B117.3 (5)
C4A—N1A—C5A117.7 (5)C4B—N1B—C17B119.2 (5)
C4A—N1A—C17A119.8 (6)C5B—N1B—C17B123.3 (5)
C5A—N1A—C17A122.2 (6)N1B—C5B—C15B121.7 (6)
N1A—C5A—C15A121.4 (6)N1B—C5B—H8B119.1
N1A—C5A—H8A119.0C15B—C5B—H8B119.2
C15A—C5A—H8A119.6C7B—C6B—C15B118.8 (6)
C7A—C6A—C15A119.2 (6)C7B—C6B—O4B122.5 (6)
C7A—C6A—O4A122.1 (6)C15B—C6B—O4B118.5 (6)
C15A—C6A—O4A118.7 (6)C6B—C7B—C8B119.7 (6)
C6A—C7A—C8A120.0 (6)C6B—C7B—O3B116.6 (6)
C6A—C7A—O3A116.2 (6)C8B—C7B—O3B123.7 (6)
C8A—C7A—O3A123.8 (6)C7B—C8B—C9B122.1 (6)
C7A—C8A—C9A121.9 (6)C7B—C8B—H9B118.2
C7A—C8A—H9A118.8C9B—C8B—H9B119.8
C9A—C8A—H9A119.3C8B—C9B—C16B119.6 (5)
C8A—C9A—C16A120.0 (6)C8B—C9B—H10B120.1
C8A—C9A—H10A120.7C16B—C9B—H10B120.3
C16A—C9A—H10A119.3C16B—C10B—C17B122.9 (5)
C16A—C10A—C17A122.2 (6)C16B—C10B—H11B118.5
C16A—C10A—H11A118.6C17B—C10B—H11B118.6
C17A—C10A—H11A119.2C12B—C11B—C18B117.0 (6)
C12A—C11A—C18A116.5 (6)C12B—C11B—H12B121.4
C12A—C11A—H12A121.4C18B—C11B—H12B121.5
C18A—C11A—H12A122.1C11B—C12B—O1B128.0 (6)
O1A—C12A—C11A128.2 (6)C11B—C12B—C13B121.7 (6)
O1A—C12A—C13A109.0 (6)O1B—C12B—C13B110.1 (6)
C11A—C12A—C13A122.8 (6)O2B—C13B—C12B109.4 (6)
C12A—C13A—O2A110.2 (6)O2B—C13B—C2B127.9 (6)
C12A—C13A—C2A122.0 (7)C12B—C13B—C2B122.6 (6)
O2A—C13A—C2A127.8 (7)C3B—C14B—C2B120.1 (6)
C3A—C14A—C2A120.7 (6)C3B—C14B—C18B118.4 (6)
C3A—C14A—C18A118.5 (6)C2B—C14B—C18B121.3 (6)
C2A—C14A—C18A120.8 (6)C5B—C15B—C6B120.5 (6)
C6A—C15A—C5A121.7 (6)C5B—C15B—C16B117.5 (6)
C6A—C15A—C16A120.2 (6)C6B—C15B—C16B122.0 (6)
C5A—C15A—C16A118.2 (6)C9B—C16B—C15B117.9 (6)
C15A—C16A—C10A117.8 (6)C9B—C16B—C10B123.8 (5)
C15A—C16A—C9A118.7 (6)C15B—C16B—C10B118.3 (5)
C10A—C16A—C9A123.4 (6)N1B—C17B—C10B116.0 (5)
N1A—C17A—C10A118.1 (6)N1B—C17B—C18B119.4 (5)
N1A—C17A—C18A117.6 (5)C10B—C17B—C18B124.6 (5)
C10A—C17A—C18A124.3 (6)C17B—C18B—C11B118.4 (6)
C17A—C18A—C11A118.5 (6)C17B—C18B—C14B121.0 (6)
C17A—C18A—C14A120.8 (6)C11B—C18B—C14B120.5 (6)
C11A—C18A—C14A120.7 (6)C6B—O4B—C20B117.1 (6)
C7A—O3A—C19A117.2 (5)C7B—O3B—C19B116.7 (5)
C6A—O4A—C20A113.4 (5)O3B—C19B—H13B108.7
O3A—C19A—H13A109.4O3B—C19B—H14B109.9
O3A—C19A—H14A109.1H13B—C19B—H14B109.9
H13A—C19A—H14A110.2O3B—C19B—H15B109.9
O3A—C19A—H15A109.5H13B—C19B—H15B109.2
H13A—C19A—H15A109.3H14B—C19B—H15B109.2
H14A—C19A—H15A109.3O4B—C20B—C21B110.0 (7)
O4A—C20A—C21A108.7 (6)O4B—C20B—H16B109.3
O4A—C20A—H16A107.8C21B—C20B—H16B109.6
C21A—C20A—H16A109.0O4B—C20B—H17B109.0
O4A—C20A—H17A110.6C21B—C20B—H17B109.4
C21A—C20A—H17A110.7H16B—C20B—H17B109.5
H16A—C20A—H17A109.9C20B—C21B—H18B109.3
C20A—C21A—H18A109.8C20B—C21B—H19B109.1
C20A—C21A—H19A109.2H18B—C21B—H19B109.7
H18A—C21A—H19A109.5C20B—C21B—H20B109.1
C20A—C21A—H20A109.4H18B—C21B—H20B109.8
H18A—C21A—H20A109.9H19B—C21B—H20B109.7
H19A—C21A—H20A109.1H21—O5—H2290.7
C1B—O1B—C12B104.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9A—H10A···O50.932.473.358 (11)159
C21B—H20B···O1Bi0.962.513.466 (11)177

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2056).

References

  • Acero, M. E. J., Avila, T. A., Granobles, P. L., Torres de Young, S. & Nicholls, S. (1995). Rev. Colomb. Quím.24, 55–64.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Chen, Z., Li, X.-G., Xie, Y.-S. & Ye, X.-L. (2009). Acta Cryst. E65, o1370. [PMC free article] [PubMed]
  • Ghosh, A. K., Bhattacharyya, F. K. & Ghosh, D. K. (1985). Exp. Parasitol.60, 404–413. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Iwasa, K., Kamigauchi, M., Sugiura, M. & Nanba, H. (1997). Planta Med.63, 196–198. [PubMed]
  • Iwasa, K., Kim, H.-S., Wataya, Y. & Lee, D.-U. (1998). Eur. J. Med. Chem.33, 65–69.
  • McCall, D. L. C., Alexander, J., Barber, J., Jaouhari, R. G., Satoskar, A. & Waigh, R. D. (1994). Bioorg. Med. Chem. Lett.4, 1663–1666.
  • Nkwengoua, E. T., Ngantchou, I., Nyasse, B., Denier, C., Blonski, C. & Schneider, B. (2009). Nat. Prod. Res.23, 1144–1150. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  • Rigaku (2009). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan, and Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheng, W. D., Jiddawi, M. S., Hong, X. Q. & Abdulla, S. M. (1997). East Afr. Med. J.74, 283–284. [PubMed]
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  • Wright, C. W., Marshall, S. J., Russell, P. F., Anderson, M. M., Phillipson, J. D., Kirby, G. C., Warhurst, D. C. & Schiff, P. L. (2000). J. Nat. Prod.63, 1638–1640. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography