PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2516.
Published online 2010 September 8. doi:  10.1107/S160053681003521X
PMCID: PMC2983366

2-Sulfanyl­idene-1,2-dihydro­pyridine-3-carbohydrazide

Abstract

All non-H atoms of the title compound, C6H7N3OS, which exists in the thione form, lie in a common plane (r.m.s. of non-H atoms = 0.08 Å). The amino group of the –NH–NH2 substituent forms an intra­molecular hydrogen bond to the S atom. The terminal –NH2 group is pyramidally coordinated; it forms a weak N—H(...)O and a weak N—H(...)S hydrogen bond. Furthermore, the N atom is an acceptor for a C—H(...)N contact. The amino group of the ring is a hydrogen-bond donor to the carbonyl O atom of an adjacent mol­ecule, this inter­action giving rise to a linear chain motif running along the b axis.

Related literature

For the synthesis of 3-mercaptonicotinoylhydrazide from 3-mercaptonicotinic acid, see: Katz et al. (1958 [triangle]). For the synthesis of 2-(3,5-di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinic acid, see: Mansor et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2516-scheme1.jpg

Experimental

Crystal data

  • C6H7N3OS
  • M r = 169.21
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2516-efi1.jpg
  • a = 7.1952 (2) Å
  • b = 7.4279 (2) Å
  • c = 7.7492 (2) Å
  • α = 88.205 (2)°
  • β = 64.201 (2)°
  • γ = 72.072 (2)°
  • V = 352.22 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 123 K
  • 0.35 × 0.05 × 0.01 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.874, T max = 0.996
  • 3311 measured reflections
  • 1619 independent reflections
  • 1391 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.090
  • S = 1.08
  • 1619 reflections
  • 128 parameters
  • 7 restraints
  • All H-atom parameters refined
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003521X/bt5335sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003521X/bt5335Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

3-Mercaptonicotinylcarbohydrazide is mentioned in the chemical (patent) literature in the context of its synthesis from 3-mercaptonicotinic acid (Katz et al., 1958). This compound was the surprise product of the reaction between ethyl 2-(3,5-di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinate and hydrazine. The compound exists in the thione form. The molecule of pryidyl-2(1H)-thione-3-carbohydrazide (Scheme I, Fig. 1) is planar (r.m.s. of non-H atoms 0.08 Å). In the six-membered ring, the two carbon–carbon double bonds are regarded as being localized. The amino –NH– group of the –NH–NH2 substituent forms an intramolecular hydrogen bond to the double-bond sulfur atom. The terminal –NH2 group is pyramidally coordinated; it does not engage in hydrogen bonding. The amino –NH– group of the ring is hydrogen-bond donor to the double-bond oxygen atom an adjacent molecule, this interaction giving rise to a linear chain motif running along the b-axis of the triclinic unit cell (Fig. 2).

Experimental

The synthesis of colorless 2-(3,5-di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinic acid was described earlier (Mansor et al., 2008); the acid was first converted to the ethyl ester. The ester (0.80 g, 2 mmol) was dissolved in ethanol (15 ml) and to this was added hydrazine hydrate (0.20 ml, 4 mmol). The mixture was heated for 24 h. The solvent was removed to give a brown gummy solid; this was recrystallized from hexane to afford orange plate-like crystals.

Refinement

All H-atoms were located in a difference Fourier map, and were refined isotropically with distance restraints of C–H 0.95±0.01 Å and N–H 0.88±0.01 Å.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of C6H7N3OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Hydrogen-bonded chain structure.

Crystal data

C6H7N3OSZ = 2
Mr = 169.21F(000) = 176
Triclinic, P1Dx = 1.595 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1952 (2) ÅCell parameters from 1745 reflections
b = 7.4279 (2) Åθ = 2.9–28.3°
c = 7.7492 (2) ŵ = 0.40 mm1
α = 88.205 (2)°T = 123 K
β = 64.201 (2)°Plate, orange
γ = 72.072 (2)°0.35 × 0.05 × 0.01 mm
V = 352.22 (2) Å3

Data collection

Bruker SMART APEX diffractometer1619 independent reflections
Radiation source: fine-focus sealed tube1391 reflections with I > 2σ(I)
graphiteRint = 0.015
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.874, Tmax = 0.996k = −9→9
3311 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090All H-atom parameters refined
S = 1.08w = 1/[σ2(Fo2) + (0.0372P)2 + 0.3308P] where P = (Fo2 + 2Fc2)/3
1619 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.67 e Å3
7 restraintsΔρmin = −0.19 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.58477 (8)0.32161 (7)0.76922 (7)0.02102 (15)
O10.7744 (2)0.81569 (18)0.44198 (19)0.0210 (3)
N10.8505 (3)0.1589 (2)0.4153 (2)0.0165 (3)
N20.5443 (3)0.7318 (2)0.7129 (2)0.0191 (3)
N30.4375 (3)0.9211 (2)0.8063 (2)0.0218 (4)
C11.0002 (3)0.1308 (3)0.2289 (3)0.0182 (4)
C21.0636 (3)0.2790 (3)0.1432 (3)0.0199 (4)
C30.9635 (3)0.4575 (3)0.2526 (3)0.0181 (4)
C40.8069 (3)0.4870 (2)0.4421 (3)0.0147 (4)
C50.7505 (3)0.3285 (2)0.5345 (3)0.0148 (4)
C60.7070 (3)0.6906 (2)0.5353 (3)0.0160 (4)
H10.805 (4)0.064 (3)0.466 (3)0.036 (7)*
H20.505 (4)0.638 (3)0.776 (3)0.039 (7)*
H30.404 (4)0.991 (3)0.724 (3)0.036 (7)*
H40.533 (3)0.956 (4)0.827 (4)0.032 (7)*
H1A1.059 (3)0.0051 (17)0.165 (3)0.020 (5)*
H2A1.171 (3)0.260 (3)0.0141 (17)0.027 (6)*
H3A1.002 (4)0.565 (2)0.199 (3)0.021 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0251 (3)0.0148 (2)0.0172 (2)−0.00847 (18)−0.00306 (19)0.00297 (16)
O10.0259 (7)0.0123 (6)0.0214 (7)−0.0081 (5)−0.0063 (6)0.0033 (5)
N10.0190 (8)0.0107 (7)0.0189 (8)−0.0055 (6)−0.0072 (6)0.0025 (6)
N20.0210 (8)0.0102 (7)0.0194 (8)−0.0041 (6)−0.0039 (7)−0.0003 (6)
N30.0250 (9)0.0114 (7)0.0216 (8)−0.0023 (6)−0.0061 (7)−0.0017 (6)
C10.0199 (9)0.0125 (8)0.0192 (9)−0.0020 (7)−0.0080 (8)−0.0016 (7)
C20.0196 (9)0.0176 (9)0.0161 (9)−0.0041 (7)−0.0036 (7)0.0011 (7)
C30.0208 (9)0.0138 (8)0.0200 (9)−0.0065 (7)−0.0090 (8)0.0047 (7)
C40.0155 (8)0.0110 (8)0.0171 (8)−0.0034 (7)−0.0075 (7)0.0016 (6)
C50.0143 (8)0.0137 (8)0.0160 (8)−0.0041 (7)−0.0067 (7)0.0016 (7)
C60.0163 (8)0.0125 (8)0.0199 (9)−0.0041 (7)−0.0091 (7)0.0023 (7)

Geometric parameters (Å, °)

S1—C51.696 (2)N3—H40.88 (1)
O1—C61.246 (2)C1—C21.365 (3)
N1—C11.348 (2)C1—H1A0.95 (1)
N1—C51.376 (2)C2—C31.395 (3)
N1—H10.88 (1)C2—H2A0.94 (1)
N2—C61.327 (2)C3—C41.380 (3)
N2—N31.416 (2)C3—H3A0.95 (1)
N2—H20.89 (1)C4—C51.433 (2)
N3—H30.88 (1)C4—C61.507 (2)
C1—N1—C5125.85 (15)C3—C2—H2A121.7 (14)
C1—N1—H1118.5 (17)C4—C3—C2122.34 (17)
C5—N1—H1115.6 (17)C4—C3—H3A116.8 (14)
C6—N2—N3121.63 (15)C2—C3—H3A120.9 (14)
C6—N2—H2119.0 (17)C3—C4—C5119.45 (16)
N3—N2—H2119.3 (17)C3—C4—C6115.35 (15)
N2—N3—H3106.3 (17)C5—C4—C6125.20 (16)
N2—N3—H4107.0 (17)N1—C5—C4114.58 (15)
H3—N3—H4109 (2)N1—C5—S1116.57 (13)
N1—C1—C2119.76 (16)C4—C5—S1128.82 (14)
N1—C1—H1A116.8 (14)O1—C6—N2121.97 (16)
C2—C1—H1A123.4 (14)O1—C6—C4119.33 (16)
C1—C2—C3117.83 (17)N2—C6—C4118.66 (15)
C1—C2—H2A120.5 (14)
C5—N1—C1—C2−0.3 (3)C3—C4—C5—S1173.23 (15)
N1—C1—C2—C3−2.1 (3)C6—C4—C5—S1−7.1 (3)
C1—C2—C3—C40.7 (3)N3—N2—C6—O10.2 (3)
C2—C3—C4—C53.0 (3)N3—N2—C6—C4−177.57 (17)
C2—C3—C4—C6−176.77 (17)C3—C4—C6—O1−2.5 (3)
C1—N1—C5—C43.8 (3)C5—C4—C6—O1177.77 (17)
C1—N1—C5—S1−174.60 (15)C3—C4—C6—N2175.28 (17)
C3—C4—C5—N1−4.9 (3)C5—C4—C6—N2−4.4 (3)
C6—C4—C5—N1174.76 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (1)1.95 (2)2.751 (2)152 (2)
N2—H2···S10.89 (1)2.24 (2)3.007 (2)145 (2)
N3—H3···O1ii0.88 (2)2.36 (3)3.214 (2)166 (3)
N3—H4···S1iii0.88 (3)2.85 (3)3.4173 (18)124 (2)
C2—H2A···N3iv0.94 (1)2.69 (2)3.323 (4)125 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+2, −z+1; (iii) x, y+1, z; (iv) x+1, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5335).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Katz, L., Cohen, M. S. & Schröder, W. (1958). US Patent 282487.
  • Mansor, S., Yehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2008). Acta Cryst. E64, o1778. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography