PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1256.
Published online 2010 September 15. doi:  10.1107/S160053681003624X
PMCID: PMC2983361

catena-Poly[(E)-4,4′-(ethene-1,2-di­yl)dipyridinium [[bis­(thio­cyanato-κN)ferrate(II)]-di-μ-thio­cyanato-κ2 N:S2 S:N]]

Abstract

In the title compound, {(C12H12N2)[Fe(NCS)4]}n, each FeII cation is coordinated by four N-bonded and two S-bonded thio­cyanate anions in an octa­hedral coordination mode. The asymmetric unit consists of one FeII cation, located on a center of inversion, as well as one protonated (E)-4,4′-(ethene-1,2-di­yl)dipyridinium dication and two thio­cyanate anions in general positions. The crystal structure consists of Fe—(NCS)2—Fe chains extending along the a axis, in which two further thio­cyanate anions are only terminally bonded via nitro­gen. Non-coordinating (E)-4,4′-(ethene-1,2-di­yl)dipyrid­inium cations are found between the chains.

Related literature

For general background, see: Wriedt & Näther (2009a [triangle],b [triangle]); Wriedt et al. (2009a [triangle],b [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1256-scheme1.jpg

Experimental

Crystal data

  • (C12H12N2)[Fe(NCS)4]
  • M r = 472.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1256-efi1.jpg
  • a = 5.7360 (2) Å
  • b = 11.5093 (4) Å
  • c = 15.0971 (6) Å
  • β = 96.562 (3)°
  • V = 990.14 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 293 K
  • 0.16 × 0.13 × 0.09 mm

Data collection

  • Stoe IPDS-2 diffractometer
  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008 [triangle]) T min = 0.826, T max = 0.895
  • 16607 measured reflections
  • 2379 independent reflections
  • 2173 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.068
  • S = 1.09
  • 2379 reflections
  • 124 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: XCIF in SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003624X/im2228sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003624X/im2228Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr. Wolfgang Bensch for the opportunity to use his experimental facilities.

supplementary crystallographic information

Comment

Recently, we have shown that thermal decomposition reactions are an elegant route for the discovering and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt & Näther, 2009a, 2009b; Wriedt et al., 2009a, 2009b). In our ongoing investigation on the synthesis, structures and properties of such compounds based on paramagnetic transition metal pseudo-halides and N-donor ligands, we have reacted iron(II) sulfate heptahydrate, potassium thiocyanate and E-1,2-di(4'-pyridyl)-ethene in water. In this reaction single crystals of the title compound were obtained, which were characterized by single crystal X-ray diffraction.

The title compound of composition [Fe(NCS)4]n-[E-1,2-di(4'-pyridinium)-ethene]n (Fig. 1) represents an 1-D coordination polymer, in which each iron(II) cation is connected by four µ-1,3 bridging thiocyanato anions into chains that elongate in the direction of the crystallographic a-axis (Fig. 3). The octahedral coordination of each Fe cation is completed by two N-bonded thiocyanato anions. It must be noted that according to a search in the CCDC database (ConQuest Ver. 1.12 2010) such chains with transition metals are unknown (Allen, 2002).

Between the chains noncoordinating protonated (E)-4,4'-(ethene-1,2-diyl)dipyridinium cations are found, which are stacked in the direction of the crystallographic a-axis involving weak π-π-stacking interactions (Fig. 2). The FeN4S2 octahedron is slightly distorted with two long Fe—SCN distances of 2.6375 (5) Å and short Fe—NCS distances of 2.109 (2) and 2.116 (2) Å. The angles arround the metal atoms range between 87.23 (5) to 92.77 (5) and 180° (Tab. 1). The shortest intramolecular Fe···Fe distance amounts to 5.7360 (2) Å and the shortest intermolecular Fe···Fe distance amounts to 9.4919 (3) Å.

Experimental

FeSO4 × 7 H2O and 1,2-di(4'-pyridyl)-ethene were obtained from Sigma Aldrich. KNCS was obtained from Alfa Aesar. 0.6 mmol (168.8 mg) FeSO4 × 7 H2O, 1.2 mmol (118.5 mg) KNCS and 0.15 mmol (28.2 mg) 1,2-di(4'-pyridyl)-ethene were reacted with 1 mL H2O in a closed test-tube at 120°C for three days. On cooling green block-shaped single crystals of the title compound were obtained in a mixture with unknown phases.

Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with Ueq(H) = 1.2 Ueq(C,N) of the parent atom using a riding model with C—H = 0.93 Å and N—H = 0.86 Å.

Figures

Fig. 1.
: Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: i = -x + 1, -y + 1, -z + 1; ii = -x+1, -y, -z+1; iii = +x+1, +y, +z; iv = -x+2, -y+1, -z+1.
Fig. 2.
: Packing arrangement of the title compound with view approximately along the crystallographic a-axis.
Fig. 3.
: Packing arrangement of the title compound with view on the inorganic part Fe(NCS)2–(NCS)2–Fe(NCS)2 approximately along the crystallographic b-axis. The non-coordinated organic cations were omitted for clearity.

Crystal data

(C12H12N2)[Fe(NCS)4]F(000) = 480
Mr = 472.41Dx = 1.585 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16607 reflections
a = 5.7360 (2) Åθ = 2–28°
b = 11.5093 (4) ŵ = 1.20 mm1
c = 15.0971 (6) ÅT = 293 K
β = 96.562 (3)°Block, green
V = 990.14 (6) Å30.16 × 0.13 × 0.09 mm
Z = 2

Data collection

Stoe IPDS-2 diffractometer2379 independent reflections
Radiation source: fine-focus sealed tube2173 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)h = −7→7
Tmin = 0.826, Tmax = 0.895k = −15→15
16607 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0291P)2 + 0.4228P] where P = (Fo2 + 2Fc2)/3
2379 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe11.00000.00000.50000.03128 (10)
N20.3720 (3)0.38242 (17)0.30355 (13)0.0541 (4)
H20.25440.35480.26970.065*
S10.26743 (7)0.16763 (4)0.57486 (3)0.03779 (11)
C10.5284 (3)0.12116 (14)0.55629 (11)0.0334 (3)
N10.7106 (3)0.08926 (14)0.54301 (11)0.0430 (4)
S111.12064 (9)−0.23939 (5)0.76873 (3)0.04587 (13)
C111.0730 (3)−0.15568 (16)0.68107 (12)0.0371 (4)
N111.0414 (3)−0.09600 (16)0.61976 (11)0.0490 (4)
C210.6655 (4)0.52070 (17)0.32949 (15)0.0522 (5)
H210.74020.58680.31130.063*
C220.7421 (3)0.46922 (17)0.41067 (13)0.0425 (4)
C230.6230 (4)0.3727 (2)0.43548 (15)0.0571 (6)
H230.66990.33610.48950.069*
C240.4368 (4)0.3310 (2)0.38090 (17)0.0620 (6)
H240.35500.26640.39790.074*
C250.4812 (4)0.47453 (19)0.27648 (15)0.0555 (6)
H250.43230.50770.22130.067*
C260.9479 (4)0.52118 (18)0.46271 (14)0.0494 (5)
H261.00850.58910.44100.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.02351 (16)0.04009 (18)0.03042 (17)0.00428 (13)0.00389 (12)0.00449 (13)
N20.0395 (9)0.0612 (11)0.0580 (11)−0.0001 (8)−0.0097 (8)−0.0187 (9)
S10.0277 (2)0.0431 (2)0.0430 (2)0.00552 (16)0.00590 (16)−0.00552 (18)
C10.0305 (8)0.0355 (8)0.0338 (8)−0.0023 (6)0.0025 (6)−0.0036 (6)
N10.0276 (7)0.0470 (8)0.0549 (9)0.0011 (6)0.0061 (6)−0.0103 (7)
S110.0449 (3)0.0521 (3)0.0399 (2)0.0004 (2)0.00183 (19)0.0133 (2)
C110.0297 (8)0.0441 (9)0.0372 (9)−0.0029 (7)0.0025 (6)0.0003 (7)
N110.0494 (9)0.0565 (10)0.0395 (8)−0.0047 (8)−0.0020 (7)0.0121 (7)
C210.0602 (13)0.0386 (10)0.0549 (12)−0.0038 (9)−0.0060 (10)0.0019 (8)
C220.0389 (9)0.0434 (10)0.0435 (10)−0.0004 (7)−0.0029 (8)−0.0071 (8)
C230.0644 (14)0.0628 (13)0.0417 (10)−0.0140 (11)−0.0043 (10)0.0063 (9)
C240.0612 (14)0.0671 (14)0.0573 (13)−0.0247 (12)0.0048 (11)−0.0017 (11)
C250.0639 (14)0.0466 (11)0.0510 (12)0.0118 (10)−0.0146 (10)−0.0034 (9)
C260.0510 (11)0.0445 (10)0.0504 (11)−0.0050 (8)−0.0048 (9)0.0022 (8)

Geometric parameters (Å, °)

Fe1—N112.1090 (16)C11—N111.150 (2)
Fe1—N11i2.1090 (16)C21—C251.359 (3)
Fe1—N12.1165 (15)C21—C221.387 (3)
Fe1—N1i2.1165 (15)C21—H210.9300
Fe1—S1ii2.6375 (5)C22—C231.378 (3)
Fe1—S1iii2.6375 (5)C22—C261.469 (3)
N2—C251.320 (3)C23—C241.360 (3)
N2—C241.324 (3)C23—H230.9300
N2—H20.8600C24—H240.9300
S1—C11.6437 (17)C25—H250.9300
S1—Fe1iv2.6375 (5)C26—C26v1.307 (4)
C1—N11.147 (2)C26—H260.9300
S11—C111.6345 (19)
N11—Fe1—N11i180.0N11—C11—S11179.25 (19)
N11—Fe1—N190.39 (7)C11—N11—Fe1174.08 (17)
N11i—Fe1—N189.61 (7)C25—C21—C22120.0 (2)
N11—Fe1—N1i89.61 (7)C25—C21—H21120.0
N11i—Fe1—N1i90.39 (7)C22—C21—H21120.0
N1—Fe1—N1i180.0 (9)C23—C22—C21117.88 (18)
N11—Fe1—S1ii89.26 (5)C23—C22—C26125.17 (19)
N11i—Fe1—S1ii90.74 (5)C21—C22—C26116.93 (19)
N1—Fe1—S1ii92.77 (4)C24—C23—C22120.0 (2)
N1i—Fe1—S1ii87.23 (4)C24—C23—H23120.0
N11—Fe1—S1iii90.74 (5)C22—C23—H23120.0
N11i—Fe1—S1iii89.26 (5)N2—C24—C23119.9 (2)
N1—Fe1—S1iii87.23 (4)N2—C24—H24120.1
N1i—Fe1—S1iii92.77 (4)C23—C24—H24120.1
S1ii—Fe1—S1iii180.0N2—C25—C21119.8 (2)
C25—N2—C24122.48 (18)N2—C25—H25120.1
C25—N2—H2118.8C21—C25—H25120.1
C24—N2—H2118.8C26v—C26—C22124.7 (3)
C1—S1—Fe1iv100.68 (6)C26v—C26—H26117.6
N1—C1—S1179.60 (19)C22—C26—H26117.6
C1—N1—Fe1166.29 (15)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1, y, z; (iv) x−1, y, z; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2228).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  • Wriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192-10198. [PubMed]
  • Wriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem.636, 569-575.
  • Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975-7984. [PubMed]
  • Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem.48, 6896-6903. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography