PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2666.
Published online 2010 September 30. doi:  10.1107/S1600536810038092
PMCID: PMC2983360

N′-(2-Meth­oxy­benzyl­idene)aceto­hydrazide

Abstract

In the title mol­ecule, C10H12N2O2, the acetohydrazide group is almost planar [within 0.0306 (12) Å] and forms a dihedral angle of 12.15 (14)° with the benzene ring. The meth­oxy group deviates from the attached benzene ring with a C—O—C—C torsion angle of 4.2 (4)°·The mol­ecule adopts a trans configuration with respect to the C=N bond. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of N—H(...)O hydrogen bonds and intermolecular C—H(...)O interactions further stabilize the structure.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997 [triangle]); Offe et al. (1952 [triangle]); Richardson et al. (1988 [triangle]). For related structures, see: Li & Jian (2008 [triangle]); Tamboura et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2666-scheme1.jpg

Experimental

Crystal data

  • C10H12N2O2
  • M r = 192.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2666-efi1.jpg
  • a = 5.3865 (7) Å
  • b = 8.4609 (11) Å
  • c = 11.3301 (14) Å
  • α = 77.499 (4)°
  • β = 76.516 (5)°
  • γ = 89.101 (5)°
  • V = 489.90 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 223 K
  • 0.19 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.982, T max = 0.985
  • 4827 measured reflections
  • 1694 independent reflections
  • 1489 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.163
  • S = 1.06
  • 1694 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038092/gw2092sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038092/gw2092Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Hangzhou Vocational and Technical College for financial support.

supplementary crystallographic information

Comment

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and are used as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

The acetohydrazide group is planar and it forms a dihedral angle of 12.15 (14)° with the benzene ring. deviates from the attached benzene ring by 4.2 (4)°. [C6—O1—C5—C4 = 4.2 (4)°]. The molecule adopts a trans configuration with respect to the C═N bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li & Jian, 2008).

The molecules are linked by N—H···O hydrogen bonds into a centrosymmetric dimer. In addition, an intramolecular C—H···N hydrogen bond is observed.

Experimental

2-Methoxybenzaldehyde (1.36 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 88% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 465–467 K).

Refinement

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H12N2O2Z = 2
Mr = 192.22F(000) = 204
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3865 (7) ÅCell parameters from 1694 reflections
b = 8.4609 (11) Åθ = 1.9–25.0°
c = 11.3301 (14) ŵ = 0.09 mm1
α = 77.499 (4)°T = 223 K
β = 76.516 (5)°Block, colourless
γ = 89.101 (5)°0.19 × 0.17 × 0.15 mm
V = 489.90 (11) Å3

Data collection

Bruker SMART CCD area-detector diffractometer1694 independent reflections
Radiation source: fine-focus sealed tube1489 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −6→6
Tmin = 0.982, Tmax = 0.985k = −10→9
4827 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0812P)2 + 0.265P] where P = (Fo2 + 2Fc2)/3
1694 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3030 (3)0.1576 (2)0.41553 (14)0.0617 (5)
C100.6401 (4)0.2210 (3)−0.2060 (2)0.0533 (6)
H10A0.50000.2686−0.15790.080*
H10B0.57530.1429−0.24240.080*
H10C0.73900.3041−0.27070.080*
N10.5212 (3)0.2232 (2)0.04470 (16)0.0430 (5)
N20.7383 (3)0.1459 (2)−0.00176 (16)0.0461 (5)
H20.83190.10140.04740.055*
C10.1048 (5)0.3982 (3)0.1500 (2)0.0522 (6)
H10.15750.41950.06370.063*
C2−0.1084 (5)0.4724 (3)0.2049 (2)0.0576 (6)
H2A−0.19870.54200.15600.069*
C3−0.1852 (5)0.4423 (3)0.3321 (2)0.0572 (6)
H3−0.32850.49170.36960.069*
C4−0.0514 (5)0.3388 (3)0.4053 (2)0.0562 (6)
H4−0.10480.31970.49150.067*
C50.1626 (4)0.2634 (3)0.3506 (2)0.0462 (5)
C60.2348 (6)0.1311 (4)0.5483 (2)0.0720 (8)
H6A0.35270.05930.58230.108*
H6B0.06510.08350.57910.108*
H6C0.24080.23260.57250.108*
C70.2427 (4)0.2924 (3)0.22085 (19)0.0418 (5)
C80.4680 (4)0.2133 (3)0.16151 (19)0.0421 (5)
H80.57190.15590.20960.050*
C90.8059 (4)0.1389 (3)−0.12303 (19)0.0424 (5)
O20.9982 (3)0.0679 (2)−0.16141 (14)0.0528 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0686 (11)0.0756 (12)0.0348 (8)0.0287 (9)−0.0062 (7)−0.0076 (8)
C100.0497 (13)0.0723 (16)0.0378 (12)0.0158 (11)−0.0097 (10)−0.0134 (11)
N10.0414 (9)0.0489 (11)0.0373 (9)0.0120 (7)−0.0048 (7)−0.0116 (8)
N20.0431 (10)0.0589 (12)0.0350 (9)0.0181 (8)−0.0073 (7)−0.0107 (8)
C10.0573 (13)0.0584 (14)0.0412 (12)0.0157 (11)−0.0123 (10)−0.0118 (10)
C20.0562 (14)0.0611 (15)0.0585 (15)0.0213 (11)−0.0178 (11)−0.0166 (12)
C30.0508 (13)0.0610 (15)0.0602 (15)0.0174 (11)−0.0046 (11)−0.0242 (12)
C40.0582 (14)0.0650 (15)0.0409 (12)0.0131 (11)0.0008 (10)−0.0162 (11)
C50.0486 (12)0.0489 (12)0.0391 (11)0.0084 (9)−0.0070 (9)−0.0098 (9)
C60.094 (2)0.083 (2)0.0359 (13)0.0288 (16)−0.0138 (13)−0.0109 (12)
C70.0422 (11)0.0440 (12)0.0387 (11)0.0064 (9)−0.0070 (9)−0.0114 (9)
C80.0447 (11)0.0444 (11)0.0360 (11)0.0088 (9)−0.0078 (9)−0.0088 (9)
C90.0394 (11)0.0494 (12)0.0357 (11)0.0065 (9)−0.0039 (8)−0.0091 (9)
O20.0479 (9)0.0689 (11)0.0396 (8)0.0221 (7)−0.0051 (7)−0.0143 (7)

Geometric parameters (Å, °)

O1—C51.367 (3)C2—C31.371 (3)
O1—C61.430 (3)C2—H2A0.9300
C10—C91.501 (3)C3—C41.385 (4)
C10—H10A0.9600C3—H30.9300
C10—H10B0.9600C4—C51.391 (3)
C10—H10C0.9600C4—H40.9300
N1—C81.272 (3)C5—C71.399 (3)
N1—N21.382 (2)C6—H6A0.9600
N2—C91.351 (3)C6—H6B0.9600
N2—H20.8600C6—H6C0.9600
C1—C21.383 (3)C7—C81.470 (3)
C1—C71.394 (3)C8—H80.9300
C1—H10.9300C9—O21.227 (2)
C5—O1—C6117.66 (19)C3—C4—H4119.8
C9—C10—H10A109.5C5—C4—H4119.8
C9—C10—H10B109.5O1—C5—C4124.3 (2)
H10A—C10—H10B109.5O1—C5—C7116.03 (19)
C9—C10—H10C109.5C4—C5—C7119.7 (2)
H10A—C10—H10C109.5O1—C6—H6A109.5
H10B—C10—H10C109.5O1—C6—H6B109.5
C8—N1—N2115.56 (18)H6A—C6—H6B109.5
C9—N2—N1121.13 (17)O1—C6—H6C109.5
C9—N2—H2119.4H6A—C6—H6C109.5
N1—N2—H2119.4H6B—C6—H6C109.5
C2—C1—C7121.7 (2)C1—C7—C5118.4 (2)
C2—C1—H1119.2C1—C7—C8121.2 (2)
C7—C1—H1119.2C5—C7—C8120.42 (19)
C3—C2—C1119.2 (2)N1—C8—C7120.22 (19)
C3—C2—H2A120.4N1—C8—H8119.9
C1—C2—H2A120.4C7—C8—H8119.9
C2—C3—C4120.6 (2)O2—C9—N2119.71 (19)
C2—C3—H3119.7O2—C9—C10122.64 (19)
C4—C3—H3119.7N2—C9—C10117.65 (18)
C3—C4—C5120.4 (2)
C8—N1—N2—C9175.77 (19)O1—C5—C7—C1179.4 (2)
C7—C1—C2—C30.5 (4)C4—C5—C7—C10.5 (4)
C1—C2—C3—C40.0 (4)O1—C5—C7—C8−0.9 (3)
C2—C3—C4—C5−0.3 (4)C4—C5—C7—C8−179.8 (2)
C6—O1—C5—C4−4.2 (4)N2—N1—C8—C7179.40 (17)
C6—O1—C5—C7176.9 (2)C1—C7—C8—N1−9.4 (3)
C3—C4—C5—O1−178.8 (2)C5—C7—C8—N1171.0 (2)
C3—C4—C5—C70.0 (4)N1—N2—C9—O2−179.23 (19)
C2—C1—C7—C5−0.8 (4)N1—N2—C9—C101.3 (3)
C2—C1—C7—C8179.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···N10.962.272.766 (3)111
N2—H2···O2i0.862.072.899 (2)163
C6—H6A···O1ii0.962.593.491 (3)157

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2092).

References

  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.
  • Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409. [PMC free article] [PubMed]
  • Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.
  • Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography