PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2503.
Published online 2010 September 4. doi:  10.1107/S1600536810034847
PMCID: PMC2983359

Ranunculin

Abstract

In the title mol­ecule {systematic name: (5S)-5-[(β-d-gluco­pyranos­yloxy)meth­yl]furan-2(5H)-one}, C11H16O8, the five-membered ring is essentially planar, the maximum deviation being 0.0151 (13) Å for the O atom. The six-membered ring adopts a chair conformation with puckering parameters Q = 0.581 (2) Å, θ = 9.0 (2)° and ϕ = 39.7 (13)°, and with all of the substituents of the glucoside unit having normal equatorial orientations. The crystal structure is stabilized by extensive O—H(...)O and C—H(...)O hydrogen bonding, resulting in a three-dimensional network.

Related literature

For background to ranunculin, see: Hill & van Heyningen (1951 [triangle]); Bai et al. (1996 [triangle]); Benn & Yelland (1968 [triangle]); Boll (1968 [triangle]); Camps et al. (1982 [triangle]); Fang et al. (1989 [triangle]). For chemical and spectrometric data for closely related, simple butenolides, see: Perry et al. (1996 [triangle]). For comparison bond distances, see: Allen et al. (1987 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2503-scheme1.jpg

Experimental

Crystal data

  • C11H16O8
  • M r = 276.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2503-efi1.jpg
  • a = 5.7944 (4) Å
  • b = 6.9359 (3) Å
  • c = 15.0491 (10) Å
  • β = 97.895 (2)°
  • V = 599.08 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 173 K
  • 0.30 × 0.24 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer with APEXII CCD
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.961, T max = 0.997
  • 1926 measured reflections
  • 1133 independent reflections
  • 1112 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.069
  • S = 1.04
  • 1133 reflections
  • 184 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034847/fl2315sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034847/fl2315Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Ranunculin (I) is the glycosidic precursor of the vesicant protoanemonin present in numerous species of Rannunculaceae and is especially associated with the burning sensation on chewing leaves of buttercup plants. It was first obtained in crystalline form by Hill and van Heyningen (1951) who established its gross structure and showed that it undergoes enzymatic cleavage by β-glucosidase to yield the aglucone, which underwent easy dehydration to protoanemonin. These processes were shown to occur readily under autolytic conditions (Bai et al., 1996). The S-stereochemistry of the dihydrofuranone ring was deduced by Benn and Yelland (1968), and Boll (1968), as shown in the schematic diagram, and later confirmed by synthesis (Camps et al., 1982; Fang et al., 1989). Our sample of (I) was a natural product, and as such had been biosynthesised in the plant (and not made in a laboratory). The only stereoisomer which occurs naturally is the D-isomer, and both that and the anomeric configuration of the glycoosidic bond in (I) were established by cleavage of the glycoside by β-D-glucosidases. The X-ray structure reported here provides the simplest unequivocal proof of that stereochemistry since the chirality follows from that of the D-glucopyranosyl moiety.

The molecular structure of (I) is presented in Fig. 1. The five membered ring, O1/C2—C5, is essentially planar with the maximum deviation of any atom being 0.0151 (13) Å for O1. The six-membered ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.581 (2) Å, θ = 9.0 (2)° and [var phi] = 39.7 (13)°, with all of the substituents of the glucoside unit having normal equatorial orientations. The 5-membered ring folds back away from the six-membered ring as reflected by the torsion angle C6—O3—C1—C5 -162.86 (17)°. The bond distances and angles are as expected (Allen, 2002). The structure is stabilized by extensive O—H···O and C—H···O hydrogen bonding resulting in a three diemsional network (Table 1 & Fig. 2).

There are two other, closely related, simple butenolides known, though their structures rest on chemical and spectrometric data, i.e., without X-ray crystallographic support. They are the (5R,6R) and (5S,6R) steeroisomers of 5-([1-β-D-glucopyranosyloxy]ethyl)-2(5H)-furanone (Perry et al., 1996); the glycosidic precursor of (Z)-5-ethylidene-2(5H)-furanone, a homologue of protoanemonin in Halocarpus biformis juvenile foliage.

Experimental

The details of the isolation, and some of the physical properties, of our sample of (I) have been reported previously (Benn & Yelland 1968). Suitable crystals of the title compound for X-ray study were grown from a solution in aqueous ethanol (ca 1:20) in the form of plates.

Refinement

An absolute structure could not be established reliably because of insufficient anomalous scattering effects. Therefore, 792 Friedel pairs were merged. The H-atoms were located from difference maps and were included in the refinements at geometrically idealized positions with C—H distances = 0.95, 0.99 and 1.00 Å for aryl, methylene and methine type H-atoms, respectively; the positions of hydroxyl H-atoms were allowed to refine freely. The H-atoms were assigned Uiso = 1.2 and 1.5 × Ueq of the parent C and O-atoms, respectively. The final difference map was free of chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.
Fig. 2.
Unit cell packing of the title compound showing intermolecular hydrogen bonds of O—H···O; H-atoms not involved in hydrogen bonds have been excluded.

Crystal data

C11H16O8F(000) = 292
Mr = 276.24Dx = 1.531 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1560 reflections
a = 5.7944 (4) Åθ = 1.0–30.0°
b = 6.9359 (3) ŵ = 0.13 mm1
c = 15.0491 (10) ÅT = 173 K
β = 97.895 (2)°Plate, colorless
V = 599.08 (6) Å30.30 × 0.24 × 0.02 mm
Z = 2

Data collection

Nonius APEXII CCD [APEXII is a Bruker machine - is this a KappaCCD upgraded with an APEXII CCD?]diffractometer1133 independent reflections
Radiation source: fine-focus sealed tube1112 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] & ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −6→6
Tmin = 0.961, Tmax = 0.997k = −6→8
1926 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.040P)2 + 0.1617P] where P = (Fo2 + 2Fc2)/3
1133 reflections(Δ/σ)max = 0.002
184 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = −0.16 e Å3

Special details

Experimental. NMR data (400 MHz, 1H; 100 MHz 13C) for a solution in D2O containing sodium 3-trimethylsilylpropionate-2,3 - d4 as reference: δH (400 MHz) 7.77 (1H, dd, J = 1.5 and 5.8 Hz, H-4), 6.3 (1H, dd, J = 2.1 and 5.8 Hz, H-3), 5.47 (1H, m), 4.48 (1H, d, J = 7.9 Hz, H-1'), 4.30 (1H, dd, J = 3.2 and 12.2 Hz, H-6 A), 3.95 (1H, dd, J = 5.8 and 12.2 Hz, H-6B), 3.91 (1H, dd, J = 2.1 and 12.5 Hz, H-6A'), 3.72 (1H, dd, J = 5.8 and 12.5 Hz, H-6B'), 3.48 (1H, dd, dd, J = ca 9 Hz H-3'), 3.43 (1H, m, H-5'), 3.37 (1H, dd, J = ca 9 Hz, H=4'), and 3.25 (1H, dd, J = 7.9 and 9.2 Hz, H-2'); δC 179.2 s (C-2), 158.5 d (C-4), 124.7 d (C-3), 105.6 d (C-1'), 86.9 d (C-5), 78.7 d (C-5'), 78.3 d (C-3'), 75.6 d (C-2'), 72.2 d (C-4'), 71.7 t (C-6), 63.3 t (C-6').
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.9146 (3)−0.1112 (2)0.96815 (9)0.0225 (4)
O21.0618 (3)−0.0493 (3)1.11025 (10)0.0309 (4)
O30.4499 (2)0.0377 (2)0.79524 (9)0.0200 (3)
O40.5209 (2)0.3269 (2)0.73224 (9)0.0188 (3)
O50.1227 (3)−0.0568 (2)0.63887 (10)0.0241 (4)
H5O0.085 (5)−0.121 (5)0.6833 (19)0.036*
O6−0.0241 (2)0.2692 (2)0.53178 (10)0.0208 (4)
H6O−0.025 (5)0.336 (5)0.479 (2)0.031*
O70.3667 (3)0.5126 (3)0.50561 (9)0.0215 (3)
H7O0.259 (5)0.591 (5)0.4895 (18)0.032*
O80.8805 (3)0.6376 (3)0.72096 (10)0.0277 (4)
H8O0.893 (5)0.563 (5)0.769 (2)0.042*
C10.6798 (3)0.0332 (4)0.84401 (13)0.0216 (5)
H1A0.71910.16010.87210.026*
H1B0.79470.00360.80300.026*
C20.8918 (4)−0.0724 (3)1.05518 (13)0.0225 (5)
C30.6434 (4)−0.0666 (4)1.06406 (14)0.0252 (5)
H30.5794−0.04861.11830.030*
C40.5229 (4)−0.0912 (3)0.98301 (14)0.0243 (5)
H40.3578−0.08950.96990.029*
C50.6862 (4)−0.1216 (3)0.91570 (13)0.0204 (5)
H50.6609−0.25170.88740.025*
C60.4469 (4)0.1343 (3)0.71336 (13)0.0178 (4)
H60.55520.06940.67650.021*
C70.2004 (3)0.1338 (3)0.66293 (13)0.0176 (4)
H70.09060.19800.69940.021*
C80.2093 (3)0.2433 (3)0.57590 (13)0.0167 (4)
H80.29850.16520.53630.020*
C90.3238 (3)0.4413 (3)0.59065 (13)0.0172 (4)
H90.21640.53100.61700.021*
C100.5559 (3)0.4305 (3)0.65204 (13)0.0180 (4)
H100.67380.36220.62080.022*
C110.6423 (4)0.6302 (3)0.67948 (14)0.0218 (5)
H11A0.62480.71370.62560.026*
H11B0.54240.68400.72170.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0203 (7)0.0294 (9)0.0169 (7)0.0038 (6)−0.0002 (5)0.0024 (6)
O20.0327 (8)0.0329 (10)0.0233 (8)0.0036 (8)−0.0095 (7)−0.0014 (8)
O30.0212 (7)0.0242 (8)0.0137 (7)−0.0011 (7)−0.0005 (5)0.0038 (6)
O40.0226 (7)0.0190 (8)0.0143 (7)−0.0026 (6)0.0005 (5)−0.0001 (6)
O50.0317 (8)0.0223 (8)0.0172 (7)−0.0077 (7)−0.0007 (6)0.0020 (7)
O60.0177 (7)0.0259 (8)0.0174 (7)−0.0007 (6)−0.0027 (6)0.0030 (7)
O70.0218 (7)0.0257 (8)0.0172 (7)0.0016 (7)0.0036 (6)0.0063 (7)
O80.0262 (8)0.0330 (9)0.0227 (8)−0.0102 (8)−0.0010 (6)0.0034 (8)
C10.0200 (10)0.0262 (12)0.0175 (10)−0.0020 (10)−0.0010 (8)0.0041 (9)
C20.0302 (11)0.0188 (10)0.0175 (9)0.0063 (10)0.0000 (9)0.0026 (9)
C30.0306 (11)0.0257 (11)0.0201 (10)0.0037 (10)0.0064 (8)0.0025 (10)
C40.0235 (10)0.0234 (12)0.0264 (12)0.0004 (10)0.0044 (9)0.0071 (10)
C50.0217 (10)0.0214 (11)0.0168 (10)−0.0001 (9)−0.0023 (8)0.0016 (9)
C60.0216 (10)0.0179 (10)0.0138 (9)−0.0003 (9)0.0020 (7)0.0016 (9)
C70.0190 (10)0.0188 (10)0.0151 (9)−0.0014 (9)0.0025 (7)0.0003 (9)
C80.0152 (10)0.0207 (10)0.0135 (9)0.0003 (9)−0.0001 (8)−0.0008 (8)
C90.0185 (10)0.0191 (10)0.0143 (9)0.0010 (9)0.0038 (7)0.0010 (9)
C100.0180 (10)0.0216 (10)0.0147 (9)−0.0004 (10)0.0038 (8)0.0017 (9)
C110.0253 (11)0.0206 (11)0.0189 (10)−0.0016 (9)0.0004 (8)0.0006 (10)

Geometric parameters (Å, °)

O1—C21.361 (2)C2—C31.464 (3)
O1—C51.447 (2)C3—C41.331 (3)
O2—C21.208 (3)C3—H30.9500
O3—C61.401 (2)C4—C51.493 (3)
O3—C11.430 (2)C4—H40.9500
O4—C61.419 (3)C5—H51.0000
O4—C101.443 (2)C6—C71.523 (3)
O5—C71.427 (3)C6—H61.0000
O5—H5O0.86 (3)C7—C81.521 (3)
O6—C81.434 (2)C7—H71.0000
O6—H6O0.92 (3)C8—C91.528 (3)
O7—C91.425 (2)C8—H81.0000
O7—H7O0.84 (3)C9—C101.525 (2)
O8—C111.435 (3)C9—H91.0000
O8—H8O0.88 (3)C10—C111.511 (3)
C1—C51.519 (3)C10—H101.0000
C1—H1A0.9900C11—H11A0.9900
C1—H1B0.9900C11—H11B0.9900
C2—O1—C5109.40 (15)O4—C6—H6109.9
C6—O3—C1111.09 (15)C7—C6—H6109.9
C6—O4—C10112.00 (15)O5—C7—C8106.92 (16)
C7—O5—H5O113 (2)O5—C7—C6111.72 (17)
C8—O6—H6O110.7 (18)C8—C7—C6106.69 (16)
C9—O7—H7O105.7 (19)O5—C7—H7110.5
C11—O8—H8O107 (2)C8—C7—H7110.5
O3—C1—C5108.08 (17)C6—C7—H7110.5
O3—C1—H1A110.1O6—C8—C7108.63 (16)
C5—C1—H1A110.1O6—C8—C9108.56 (17)
O3—C1—H1B110.1C7—C8—C9112.90 (16)
C5—C1—H1B110.1O6—C8—H8108.9
H1A—C1—H1B108.4C7—C8—H8108.9
O2—C2—O1120.56 (19)C9—C8—H8108.9
O2—C2—C3130.8 (2)O7—C9—C10108.24 (15)
O1—C2—C3108.66 (17)O7—C9—C8107.89 (16)
C4—C3—C2108.1 (2)C10—C9—C8111.93 (17)
C4—C3—H3125.9O7—C9—H9109.6
C2—C3—H3125.9C10—C9—H9109.6
C3—C4—C5109.8 (2)C8—C9—H9109.6
C3—C4—H4125.1O4—C10—C11107.91 (16)
C5—C4—H4125.1O4—C10—C9108.49 (15)
O1—C5—C4103.91 (16)C11—C10—C9110.63 (17)
O1—C5—C1106.48 (16)O4—C10—H10109.9
C4—C5—C1115.19 (19)C11—C10—H10109.9
O1—C5—H5110.3C9—C10—H10109.9
C4—C5—H5110.3O8—C11—C10114.47 (18)
C1—C5—H5110.3O8—C11—H11A108.6
O3—C6—O4107.90 (15)C10—C11—H11A108.6
O3—C6—C7109.54 (16)O8—C11—H11B108.6
O4—C6—C7109.80 (16)C10—C11—H11B108.6
O3—C6—H6109.9H11A—C11—H11B107.6
C6—O3—C1—C5−162.86 (17)O3—C6—C7—C8179.11 (17)
C5—O1—C2—O2−176.8 (2)O4—C6—C7—C860.8 (2)
C5—O1—C2—C33.2 (2)O5—C7—C8—O668.0 (2)
O2—C2—C3—C4176.8 (3)C6—C7—C8—O6−172.30 (16)
O1—C2—C3—C4−3.3 (3)O5—C7—C8—C9−171.50 (16)
C2—C3—C4—C52.0 (3)C6—C7—C8—C9−51.8 (2)
C2—O1—C5—C4−2.0 (2)O6—C8—C9—O7−71.42 (19)
C2—O1—C5—C1120.06 (19)C7—C8—C9—O7168.07 (16)
C3—C4—C5—O1−0.1 (3)O6—C8—C9—C10169.60 (14)
C3—C4—C5—C1−116.2 (2)C7—C8—C9—C1049.1 (2)
O3—C1—C5—O1−175.41 (16)C6—O4—C10—C11−177.97 (16)
O3—C1—C5—C4−60.8 (2)C6—O4—C10—C962.1 (2)
C1—O3—C6—O4−61.2 (2)O7—C9—C10—O4−169.84 (18)
C1—O3—C6—C7179.26 (17)C8—C9—C10—O4−51.1 (2)
C10—O4—C6—O3171.64 (15)O7—C9—C10—C1172.0 (2)
C10—O4—C6—C7−69.02 (19)C8—C9—C10—C11−169.25 (17)
O3—C6—C7—O5−64.4 (2)O4—C10—C11—O874.2 (2)
O4—C6—C7—O5177.31 (17)C9—C10—C11—O8−167.27 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5O···O8i0.86 (3)2.17 (3)2.910 (2)144 (3)
O6—H6O···O5ii0.92 (3)1.94 (3)2.824 (2)162 (3)
O7—H7O···O6ii0.84 (3)1.84 (3)2.668 (2)173 (3)
O8—H8O···O2iii0.88 (3)1.96 (3)2.830 (2)167 (3)
C3—H3···O4iv0.952.553.413 (3)151
C4—H4···O1v0.952.573.504 (3)168
C8—H8···O7vi1.002.373.306 (3)155
C1—H1A···O2iii0.992.383.289 (3)153
C10—H10···O6vii1.002.433.415 (3)167
O6—H6O···O70.92 (3)2.56 (3)2.894 (2)102 (2)
C11—H11A···O70.992.592.986 (3)104

Symmetry codes: (i) x−1, y−1, z; (ii) −x, y+1/2, −z+1; (iii) −x+2, y+1/2, −z+2; (iv) −x+1, y−1/2, −z+2; (v) x−1, y, z; (vi) −x+1, y−1/2, −z+1; (vii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2315).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bai, Y., Benn, M. H., Majak, W. & McDiarmid, R. (1996). J. Agric. Food Chem.44, 2235–2238.
  • Benn, M. H. & Yelland, L. J. (1968). Can. J. Chem.46, 729–732.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Boll, P. M. (1968). Acta Chem. Scand.22, 3245–3250.
  • Camps, P., Cardellach, J., Font, J., Ortuno, R. M. & Ponsati, O. (1982). Tetrahedron, 38, 2395–2402.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Fang, Z., Zhou, J. & Huang, L. (1989). Yaoxue Xuebao, 24, 182–188. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hill, R. & van Heyningen, R. (1951). Biochem. J.49, 332–335. [PubMed]
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Perry, N. B., Benn, M. H., Forster, L. M., Routledge, A. & Weavers, R. T. (1996). Phytochemistry, 42, 453–459. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography