PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1224.
Published online 2010 September 8. doi:  10.1107/S1600536810035506
PMCID: PMC2983358

(R)-2-Methyl­piperazine-1,4-diium diaqua­tetra­chloridoferrate(II)

Abstract

In the title salt, (C5H14N2)[FeCl4(H2O)2], the FeII cation is coordinated by four Cl anions and two water mol­ecules in a distorted octa­hedral geometry. The piperazine ring adopts a normal chair conformation. Inter­molecular N—H(...)Cl, N—H(...)(Cl,Cl) and O—H(...)Cl hydrogen bonding is present in the crystal structure.

Related literature

For hydrogen bonding in metal–chlorido complexes, see: Brammer et al. (2001 [triangle]); Bremner & Harrison (2003 [triangle]); Kefi & Nasr (2005 [triangle]). For the crystal structure of a related compound, piperazindiium tetra­chloridozincate(II), see: Sutherland & Harrison (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1224-scheme1.jpg

Experimental

Crystal data

  • (C5H14N2)[FeCl4(H2O)2]
  • M r = 335.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1224-efi1.jpg
  • a = 8.6013 (17) Å
  • b = 6.4495 (13) Å
  • c = 12.024 (2) Å
  • β = 101.64 (3)°
  • V = 653.3 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.95 mm−1
  • T = 291 K
  • 0.28 × 0.24 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.8, T max = 0.9
  • 6105 measured reflections
  • 2558 independent reflections
  • 2456 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.050
  • S = 1.08
  • 2558 reflections
  • 129 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1156 Friedel pairs
  • Flack parameter: 0.010 (14)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035506/xu5019sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035506/xu5019Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Anyang Institute of Technology, China.

supplementary crystallographic information

Comment

Recently much attention has been devoted to hydrogen bonding networks in molecular salts containing metal-chlorido complexes (Brammer et al., 2001; Bremner & Harrison, 2003; Kefi & Nasr, 2005). The crystal structure of piperazinediium tetrachloridozincate(II) has been reported (Sutherland & Harrison, 2009). The construction of new members of this family is an important direction in the development of coordination chemistry. We report here the crystal structure of the title compound.

The crystal structure of the title compound (Fig. 1) contains the protonated piperazindiium cations and trans-Fe(H2O)2Cl4 octahedral anions. The piperazine ring adopts a chair conformation. An extensive network of N—H···Cl, N—H··· (Cl,Cl) and O—H···Cl hydrogen bonds results in a structure with a three-dimensional hydrogen-bond network (Fig. 2).

Experimental

(R)-2-Methylpiperazine (2 mmol, 0.2 g), FeCl3(2 mmol, 0.31 g), KI (1 mmol, 0.17), I2 (0.5 mmol, 0.13 g) and 5% aqueous HCl (5 ml) were dissolved in 10 ml water, the solution was heated to 353 K (0.5 h), forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 6 d.

Refinement

Water H atoms were located in a difference Fourier map and refined as riding their as found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.9 or 0.98 and N—H = 0.90 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level
Fig. 2.
The packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines

Crystal data

(C5H14N2)[FeCl4(H2O)2]F(000) = 344
Mr = 335.86Dx = 1.707 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2456 reflections
a = 8.6013 (17) Åθ = 3.2–26.0°
b = 6.4495 (13) ŵ = 1.95 mm1
c = 12.024 (2) ÅT = 291 K
β = 101.64 (3)°Block, yellow
V = 653.3 (2) Å30.28 × 0.24 × 0.20 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer2558 independent reflections
Radiation source: fine-focus sealed tube2456 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −7→7
Tmin = 0.8, Tmax = 0.9l = −14→14
6105 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023w = 1/[σ2(Fo2) + (0.0172P)2 + 0.0801P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.19 e Å3
2558 reflectionsΔρmin = −0.24 e Å3
129 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.116 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1156 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.010 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.92584 (4)0.85265 (6)0.73702 (3)0.02261 (10)
Cl10.63527 (7)0.89798 (9)0.69296 (5)0.03230 (17)
Cl20.95176 (8)1.16607 (10)0.86527 (5)0.03236 (16)
Cl30.88976 (8)0.53109 (10)0.60858 (5)0.03094 (16)
Cl41.21704 (8)0.81475 (10)0.77621 (7)0.0463 (2)
N10.2717 (2)0.3313 (4)0.75683 (15)0.0271 (5)
H1C0.19220.24930.76900.033*
H1D0.23960.46390.75870.033*
N20.5845 (2)0.3786 (4)0.71209 (16)0.0309 (5)
H2C0.61470.24530.71030.037*
H2D0.66480.45880.69940.037*
O10.9382 (2)1.0515 (3)0.59861 (15)0.0433 (5)
H110.98181.03470.54460.065*
H120.91881.18700.60130.065*
O20.91049 (19)0.6462 (3)0.87073 (13)0.0303 (4)
H210.92340.50370.86340.045*
H220.95450.66970.94060.045*
C10.4148 (3)0.2974 (4)0.84969 (18)0.0242 (5)
H1A0.44470.15060.85080.029*
C20.5510 (3)0.4269 (4)0.82553 (19)0.0271 (6)
H2A0.52480.57270.82890.032*
H2B0.64520.40030.88330.032*
C30.4415 (3)0.4152 (5)0.6213 (2)0.0339 (6)
H3A0.46490.37960.54800.041*
H3B0.41270.56070.61980.041*
C40.3052 (3)0.2856 (4)0.64264 (19)0.0317 (6)
H4A0.21150.31460.58490.038*
H4B0.33080.13980.63790.038*
C50.3760 (3)0.3539 (5)0.9633 (2)0.0399 (6)
H5A0.33470.49260.96000.060*
H5B0.47050.34581.02130.060*
H5C0.29810.25930.98070.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.02514 (17)0.01809 (17)0.02560 (17)−0.00031 (12)0.00748 (12)0.00170 (13)
Cl10.0251 (3)0.0260 (4)0.0452 (4)0.0010 (2)0.0056 (2)−0.0016 (3)
Cl20.0461 (4)0.0235 (3)0.0255 (3)0.0002 (3)0.0024 (3)−0.0033 (3)
Cl30.0468 (4)0.0231 (3)0.0269 (3)0.0018 (3)0.0171 (3)−0.0002 (3)
Cl40.0270 (4)0.0260 (5)0.0866 (6)0.0004 (3)0.0131 (3)0.0033 (4)
N10.0224 (10)0.0257 (12)0.0326 (11)−0.0024 (9)0.0039 (8)0.0032 (10)
N20.0295 (11)0.0285 (13)0.0388 (11)−0.0037 (10)0.0163 (8)−0.0018 (11)
O10.0727 (14)0.0263 (10)0.0418 (11)0.0091 (10)0.0376 (10)0.0080 (9)
O20.0425 (10)0.0245 (10)0.0224 (8)−0.0018 (8)0.0033 (7)0.0017 (8)
C10.0243 (12)0.0214 (14)0.0249 (12)−0.0003 (10)0.0005 (9)0.0041 (10)
C20.0235 (12)0.0272 (15)0.0300 (13)−0.0037 (11)0.0044 (10)−0.0014 (11)
C30.0438 (15)0.0347 (16)0.0247 (12)−0.0036 (12)0.0106 (10)0.0005 (11)
C40.0350 (14)0.0298 (15)0.0273 (13)−0.0028 (11)−0.0007 (10)−0.0031 (11)
C50.0432 (15)0.0486 (17)0.0298 (13)−0.0074 (14)0.0122 (11)0.0019 (13)

Geometric parameters (Å, °)

Fe1—O22.1122 (17)O2—H210.9315
Fe1—O12.1205 (18)O2—H220.8622
Fe1—Cl12.4654 (9)C1—C21.514 (3)
Fe1—Cl42.4655 (8)C1—C51.515 (3)
Fe1—Cl22.5249 (9)C1—H1A0.9800
Fe1—Cl32.5669 (8)C2—H2A0.9700
N1—C41.488 (3)C2—H2B0.9700
N1—C11.502 (3)C3—C41.503 (3)
N1—H1C0.9000C3—H3A0.9700
N1—H1D0.9000C3—H3B0.9700
N2—C21.483 (3)C4—H4A0.9700
N2—C31.490 (3)C4—H4B0.9700
N2—H2C0.9000C5—H5A0.9600
N2—H2D0.9000C5—H5B0.9600
O1—H110.8195C5—H5C0.9600
O1—H120.8919
O2—Fe1—O1177.97 (9)H21—O2—H22103.2
O2—Fe1—Cl191.26 (5)N1—C1—C2109.07 (19)
O1—Fe1—Cl188.22 (6)N1—C1—C5109.81 (19)
O2—Fe1—Cl490.52 (5)C2—C1—C5111.1 (2)
O1—Fe1—Cl490.00 (6)N1—C1—H1A108.9
Cl1—Fe1—Cl4178.22 (3)C2—C1—H1A108.9
O2—Fe1—Cl292.94 (5)C5—C1—H1A108.9
O1—Fe1—Cl289.03 (6)N2—C2—C1111.2 (2)
Cl1—Fe1—Cl289.83 (3)N2—C2—H2A109.4
Cl4—Fe1—Cl290.09 (3)C1—C2—H2A109.4
O2—Fe1—Cl385.99 (5)N2—C2—H2B109.4
O1—Fe1—Cl392.03 (6)C1—C2—H2B109.4
Cl1—Fe1—Cl388.41 (3)H2A—C2—H2B108.0
Cl4—Fe1—Cl391.70 (3)N2—C3—C4110.1 (2)
Cl2—Fe1—Cl3177.92 (3)N2—C3—H3A109.6
C4—N1—C1112.03 (19)C4—C3—H3A109.6
C4—N1—H1C109.2N2—C3—H3B109.6
C1—N1—H1C109.2C4—C3—H3B109.6
C4—N1—H1D109.2H3A—C3—H3B108.2
C1—N1—H1D109.2N1—C4—C3110.5 (2)
H1C—N1—H1D107.9N1—C4—H4A109.5
C2—N2—C3110.8 (2)C3—C4—H4A109.5
C2—N2—H2C109.5N1—C4—H4B109.5
C3—N2—H2C109.5C3—C4—H4B109.5
C2—N2—H2D109.5H4A—C4—H4B108.1
C3—N2—H2D109.5C1—C5—H5A109.5
H2C—N2—H2D108.1C1—C5—H5B109.5
Fe1—O1—H11130.2H5A—C5—H5B109.5
Fe1—O1—H12121.6C1—C5—H5C109.5
H11—O1—H12106.1H5A—C5—H5C109.5
Fe1—O2—H21121.5H5B—C5—H5C109.5
Fe1—O2—H22123.2
C4—N1—C1—C255.9 (3)C5—C1—C2—N2−177.4 (2)
C4—N1—C1—C5177.8 (2)C2—N2—C3—C4−57.9 (3)
C3—N2—C2—C158.3 (3)C1—N1—C4—C3−56.9 (3)
N1—C1—C2—N2−56.3 (3)N2—C3—C4—N156.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2i0.902.623.443 (2)152
N1—H1C···Cl4i0.902.813.379 (3)122
N1—H1D···Cl4ii0.902.283.169 (3)167
N2—H2C···Cl1iii0.902.263.145 (3)168
N2—H2D···Cl30.902.453.275 (2)152
O1—H11···Cl3iv0.822.333.147 (2)173
O1—H12···Cl3v0.892.243.127 (2)176
O2—H21···Cl2iii0.932.193.119 (2)174
O2—H22···Cl2vi0.862.313.1590 (18)168

Symmetry codes: (i) x−1, y−1, z; (ii) x−1, y, z; (iii) x, y−1, z; (iv) −x+2, y+1/2, −z+1; (v) x, y+1, z; (vi) −x+2, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5019).

References

  • Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des.1, 277–290.
  • Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kefi, R. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct.220, 241.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography