PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2601.
Published online 2010 September 25. doi:  10.1107/S1600536810037177
PMCID: PMC2983357

1-Benzoyl-3,3-dibutyl­thio­urea

Abstract

The title mol­ecule, C16H24N2OS, is twisted about the central N(H)—C bond with a C—N(H)—C—N torsion angle of −62.67 (15)°. The carbonyl group is twisted out of the plane of the benzene ring, forming a C—C—C=O torsion angle of −25.06 (17)°. In the crystal, mol­ecules related by centres of symmetry are linked by pairs of inter­molecular N—H(...)S hydrogen bonds, forming eight-membered {(...)HNCS}2 synthons. These are further connected by weak via C—H(...)O contacts, forming a two-dimensional array in the bc plane.

Related literature

For pharmaceutical applications of thio­urea derivatives, see: Binzet et al. (2009 [triangle]); Lipowska et al. (1996 [triangle]). For the coordination potential of thio­urea derivatives, see: Henderson et al. (2002 [triangle]); Hallale et al. (2005 [triangle]). For the use of ruthenium(III) complexes of thio­ureas as catalysts, see: Gunasekaran & Karvembu (2010 [triangle]). For related structures, see: Gunasekaran et al. (2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2601-scheme1.jpg

Experimental

Crystal data

  • C16H24N2OS
  • M r = 292.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2601-efi1.jpg
  • a = 10.3213 (7) Å
  • b = 15.7043 (11) Å
  • c = 10.0992 (7) Å
  • β = 98.751 (1)°
  • V = 1617.91 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 100 K
  • 0.40 × 0.40 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.925, T max = 0.971
  • 15120 measured reflections
  • 3725 independent reflections
  • 3204 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.092
  • S = 1.03
  • 3725 reflections
  • 185 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037177/lh5132sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037177/lh5132Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NG thanks the NITT for a Fellowship. The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

Thiourea and its derivatives have important pharmaceutical applications (Binzet et al., 2009; Lipowska et al., 1996). These species are also considered as versatile and attractive ligands due to their coordination ability to a wide range of metal centres, either as neutral ligands, or as mono- or di-anions (Henderson et al., 2002; Hallale et al., 2005). Their coordination complexes can also exhibit useful properties. As an example of a recent application, ruthenium(III) complexes containing these ligands have recently been used as catalysts for oxidation of alcohols to carbonyl compounds (Gunasekaran & Karvembu, 2010). In continuation of structural studies of these molecules (Gunasekaran et al., 2010a; Gunasekaran et al., 2010b), (I), the crystal structure of the title compound was carried out.

In (I), the molecule is twisted about the central N1—C8 bond as reflected in the value of the C7—N1—C8—S1 torsion angle of 119.81 (11) ° and C7—N1—C8—-N2 of -62.67 (15) ° (see Fig. 1). The carbonyl group is twisted out of the plane of the benzene ring to which it is attached [the C2—C1—C7—O1 dihedral angle = -25.06 (17) °], and the butyl groups lie on opposite sides of the mean plane formed by the N2S atoms.

The most prominent intermolecular interactions are of the type N—H···S, occurring between centrosymmetrically related molecules to form an eight-membered {···HNCS}2 synthon, Table 1. The dimeric aggregates are linked into a 2-D array via C—H···O contacts, Fig. 2 and Table 1. The layers thus formed stack along the a axis, Fig. 3.

Experimental

A solution of benzoyl chloride (0.7029 g, 5 mmol) in acetone (50 ml) was added drop wise to a suspension of potassium thiocyanate (0.4859 g, 5 mmol) in anhydrous acetone (50 ml). The reaction mixture was heated under reflux for 45 min and then cooled to room temperature. A solution of dibutyl amine (0.6462 g, 5 mmol) in acetone (30 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered, washed with water and dried in vacuo. Single crystals of (I) for X-ray diffraction were grown at room temperature from its acetone solution. M. pt. 358–360 K; Yield 76%. FT—IR (KBr) ν(N—H) 3174, ν(C═O) 1688, ν(C═S) 1243 cm-1.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; the Uiso value was freely refined.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
View of the 2-D array in (I). The N–H···S hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, respectively.
Fig. 3.
Unit-cell contents shown in projection down the a axis in (I) showing the stacking of layers. The N–H···S hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, ...

Crystal data

C16H24N2OSF(000) = 632
Mr = 292.43Dx = 1.201 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5696 reflections
a = 10.3213 (7) Åθ = 4.4–28.3°
b = 15.7043 (11) ŵ = 0.20 mm1
c = 10.0992 (7) ÅT = 100 K
β = 98.751 (1)°Block, colourless
V = 1617.91 (19) Å30.40 × 0.40 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer3725 independent reflections
Radiation source: fine-focus sealed tube3204 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→13
Tmin = 0.925, Tmax = 0.971k = −20→20
15120 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0441P)2 + 0.602P] where P = (Fo2 + 2Fc2)/3
3725 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.31557 (3)0.56922 (2)0.46025 (3)0.01948 (10)
O10.49254 (9)0.58166 (6)0.12400 (9)0.0197 (2)
N10.53208 (10)0.59664 (7)0.35231 (10)0.0161 (2)
H1n0.5663 (15)0.5638 (9)0.4155 (13)0.027 (4)*
N20.36726 (10)0.69784 (7)0.30300 (10)0.0178 (2)
C10.70516 (12)0.54489 (8)0.23442 (12)0.0169 (2)
C20.73420 (13)0.49345 (8)0.13018 (13)0.0214 (3)
H2A0.66670.47670.06040.026*
C30.86217 (14)0.46701 (9)0.12914 (15)0.0275 (3)
H3A0.88210.43110.05920.033*
C40.96133 (14)0.49266 (9)0.22958 (15)0.0281 (3)
H4A1.04890.47460.22780.034*
C50.93326 (13)0.54464 (9)0.33254 (14)0.0252 (3)
H5A1.00140.56240.40100.030*
C60.80499 (13)0.57064 (8)0.33523 (13)0.0205 (3)
H6A0.78530.60600.40590.025*
C70.56729 (12)0.57488 (7)0.22861 (12)0.0159 (2)
C80.40510 (12)0.62549 (8)0.36472 (12)0.0164 (2)
C90.23215 (13)0.72865 (8)0.29594 (13)0.0205 (3)
H9A0.23200.79160.29960.025*
H9B0.19440.70700.37390.025*
C100.14839 (12)0.69899 (8)0.16698 (13)0.0202 (3)
H10A0.14030.63620.16870.024*
H10B0.19260.71440.08990.024*
C110.01211 (14)0.73842 (9)0.14782 (14)0.0274 (3)
H11A−0.02980.72610.22760.033*
H11B0.02020.80100.14070.033*
C12−0.07515 (14)0.70524 (10)0.02386 (14)0.0282 (3)
H12A−0.16170.73210.01660.042*
H12B−0.08450.64340.03080.042*
H12C−0.03560.7189−0.05580.042*
C130.45409 (13)0.75523 (8)0.24042 (12)0.0194 (3)
H13A0.40050.79030.17110.023*
H13B0.51530.72080.19590.023*
C140.53205 (13)0.81332 (8)0.34351 (13)0.0218 (3)
H14A0.59340.77860.40650.026*
H14B0.47130.84250.39560.026*
C150.60954 (14)0.87993 (8)0.27769 (14)0.0247 (3)
H15A0.54730.91630.21840.030*
H15B0.65740.91680.34830.030*
C160.70717 (14)0.84140 (9)0.19606 (14)0.0265 (3)
H16A0.75380.88710.15700.040*
H16B0.66030.80610.12420.040*
H16C0.77030.80620.25440.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01575 (16)0.02258 (17)0.02072 (17)0.00138 (11)0.00475 (12)0.00432 (12)
O10.0204 (5)0.0224 (4)0.0150 (4)−0.0002 (3)−0.0014 (4)−0.0001 (3)
N10.0144 (5)0.0204 (5)0.0133 (5)0.0021 (4)0.0010 (4)0.0027 (4)
N20.0170 (5)0.0197 (5)0.0162 (5)0.0014 (4)0.0007 (4)0.0015 (4)
C10.0165 (6)0.0178 (6)0.0169 (6)−0.0016 (4)0.0042 (5)0.0036 (4)
C20.0238 (7)0.0202 (6)0.0207 (6)−0.0016 (5)0.0048 (5)0.0000 (5)
C30.0292 (8)0.0245 (7)0.0310 (8)0.0039 (6)0.0121 (6)−0.0009 (6)
C40.0199 (7)0.0292 (7)0.0372 (8)0.0061 (5)0.0102 (6)0.0093 (6)
C50.0179 (7)0.0312 (7)0.0258 (7)−0.0025 (5)0.0010 (5)0.0064 (6)
C60.0191 (6)0.0247 (6)0.0178 (6)−0.0020 (5)0.0038 (5)0.0020 (5)
C70.0174 (6)0.0143 (5)0.0160 (6)−0.0028 (4)0.0026 (5)0.0009 (4)
C80.0146 (6)0.0199 (6)0.0140 (6)0.0005 (4)−0.0001 (4)−0.0013 (4)
C90.0199 (6)0.0220 (6)0.0191 (6)0.0066 (5)0.0015 (5)0.0000 (5)
C100.0190 (6)0.0241 (6)0.0171 (6)0.0036 (5)0.0016 (5)0.0003 (5)
C110.0239 (7)0.0314 (7)0.0248 (7)0.0096 (6)−0.0025 (5)−0.0028 (6)
C120.0210 (7)0.0386 (8)0.0238 (7)0.0056 (6)−0.0008 (5)0.0007 (6)
C130.0229 (6)0.0174 (6)0.0176 (6)−0.0008 (5)0.0019 (5)0.0023 (5)
C140.0217 (7)0.0247 (6)0.0190 (6)0.0007 (5)0.0028 (5)−0.0045 (5)
C150.0270 (7)0.0216 (6)0.0247 (7)−0.0026 (5)0.0013 (5)−0.0051 (5)
C160.0227 (7)0.0313 (7)0.0253 (7)−0.0010 (6)0.0029 (6)0.0025 (6)

Geometric parameters (Å, °)

S1—C81.6843 (13)C9—H9B0.9900
O1—C71.2144 (15)C10—C111.5221 (18)
N1—C71.3955 (16)C10—H10A0.9900
N1—C81.4102 (16)C10—H10B0.9900
N1—H1n0.854 (9)C11—C121.5188 (19)
N2—C81.3259 (16)C11—H11A0.9900
N2—C91.4675 (16)C11—H11B0.9900
N2—C131.4790 (16)C12—H12A0.9800
C1—C61.3938 (18)C12—H12B0.9800
C1—C21.3953 (18)C12—H12C0.9800
C1—C71.4915 (17)C13—C141.5194 (17)
C2—C31.3861 (19)C13—H13A0.9900
C2—H2A0.9500C13—H13B0.9900
C3—C41.387 (2)C14—C151.5289 (19)
C3—H3A0.9500C14—H14A0.9900
C4—C51.387 (2)C14—H14B0.9900
C4—H4A0.9500C15—C161.5212 (19)
C5—C61.3896 (19)C15—H15A0.9900
C5—H5A0.9500C15—H15B0.9900
C6—H6A0.9500C16—H16A0.9800
C9—C101.5225 (18)C16—H16B0.9800
C9—H9A0.9900C16—H16C0.9800
C7—N1—C8122.03 (10)C9—C10—H10B109.2
C7—N1—H1n112.7 (11)C11—C10—H10B109.2
C8—N1—H1n114.3 (11)H10A—C10—H10B107.9
C8—N2—C9121.01 (11)C12—C11—C10112.69 (12)
C8—N2—C13124.66 (11)C12—C11—H11A109.1
C9—N2—C13114.30 (10)C10—C11—H11A109.1
C6—C1—C2119.95 (12)C12—C11—H11B109.1
C6—C1—C7122.14 (11)C10—C11—H11B109.1
C2—C1—C7117.80 (11)H11A—C11—H11B107.8
C3—C2—C1119.57 (13)C11—C12—H12A109.5
C3—C2—H2A120.2C11—C12—H12B109.5
C1—C2—H2A120.2H12A—C12—H12B109.5
C4—C3—C2120.37 (13)C11—C12—H12C109.5
C4—C3—H3A119.8H12A—C12—H12C109.5
C2—C3—H3A119.8H12B—C12—H12C109.5
C3—C4—C5120.29 (13)N2—C13—C14111.42 (10)
C3—C4—H4A119.9N2—C13—H13A109.3
C5—C4—H4A119.9C14—C13—H13A109.3
C4—C5—C6119.73 (13)N2—C13—H13B109.3
C4—C5—H5A120.1C14—C13—H13B109.3
C6—C5—H5A120.1H13A—C13—H13B108.0
C5—C6—C1120.08 (13)C13—C14—C15111.74 (11)
C5—C6—H6A120.0C13—C14—H14A109.3
C1—C6—H6A120.0C15—C14—H14A109.3
O1—C7—N1122.67 (11)C13—C14—H14B109.3
O1—C7—C1122.54 (11)C15—C14—H14B109.3
N1—C7—C1114.77 (10)H14A—C14—H14B107.9
N2—C8—N1116.41 (11)C16—C15—C14113.39 (11)
N2—C8—S1124.81 (10)C16—C15—H15A108.9
N1—C8—S1118.73 (9)C14—C15—H15A108.9
N2—C9—C10110.64 (10)C16—C15—H15B108.9
N2—C9—H9A109.5C14—C15—H15B108.9
C10—C9—H9A109.5H15A—C15—H15B107.7
N2—C9—H9B109.5C15—C16—H16A109.5
C10—C9—H9B109.5C15—C16—H16B109.5
H9A—C9—H9B108.1H16A—C16—H16B109.5
C9—C10—C11112.19 (11)C15—C16—H16C109.5
C9—C10—H10A109.2H16A—C16—H16C109.5
C11—C10—H10A109.2H16B—C16—H16C109.5
C6—C1—C2—C31.20 (19)C9—N2—C8—N1172.80 (10)
C7—C1—C2—C3177.48 (11)C13—N2—C8—N1−9.26 (17)
C1—C2—C3—C4−1.2 (2)C9—N2—C8—S1−9.85 (17)
C2—C3—C4—C50.4 (2)C13—N2—C8—S1168.09 (9)
C3—C4—C5—C60.4 (2)C7—N1—C8—N2−62.67 (15)
C4—C5—C6—C1−0.3 (2)C7—N1—C8—S1119.81 (11)
C2—C1—C6—C5−0.46 (19)C8—N2—C9—C10−93.34 (14)
C7—C1—C6—C5−176.57 (12)C13—N2—C9—C1088.52 (13)
C8—N1—C7—O12.17 (18)N2—C9—C10—C11−173.07 (11)
C8—N1—C7—C1−179.45 (11)C9—C10—C11—C12−176.53 (12)
C6—C1—C7—O1151.14 (12)C8—N2—C13—C14−82.29 (15)
C2—C1—C7—O1−25.06 (17)C9—N2—C13—C1495.77 (12)
C6—C1—C7—N1−27.25 (16)N2—C13—C14—C15−173.16 (10)
C2—C1—C7—N1156.56 (11)C13—C14—C15—C16−59.57 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···S1i0.85 (1)2.64 (1)3.4547 (11)160 (1)
C2—H2a···O1ii0.952.473.4102 (16)173
C14—H14b···O1iii0.992.583.3559 (16)136

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5132).

References

  • Binzet, G., Kulcu, N., Florke, U. & Arslan, H. (2009). J. Coord. Chem.62, 3454–3462.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gunasekaran, N. & Karvembu, R. (2010). Inorg. Chem. Commun.13, 952–955.
  • Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2113. [PMC free article] [PubMed]
  • Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst E66, o2572-o2573. [PMC free article] [PubMed]
  • Hallale, O., Bourne, S. A. & Koch, K. R. (2005). CrystEngComm, 7, 161–166.
  • Henderson, W., Nicholson, B. K., Dinger, B. M. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210–218.
  • Lipowska, M., Hayes, B. L., Hansen, L., Taylor, A. Jr & Marzilli, L. G. (1996). Inorg. Chem.35, 4227–4231. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography