PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2529.
Published online 2010 September 11. doi:  10.1107/S1600536810035373
PMCID: PMC2983354

7-[2-(3-Fur­yl)eth­yl]-7,8-dimethyl-3,5,6,6a,7,8,9,10-octa­hydro-1H-naphtho­[1,8a-c]furan-3-one

Abstract

In the title mol­ecule, C20H26O3, a clerodane diterpenoid isolated from Dodonaea viscosa­, the trans-fused six-membered rings of the deca­line system display chair conformations. The five-membered lactone ring adopts an envelope conformation and the five-membered furan ring is essentially planar with a maximum deviation of 0.0052 (12) Å.

Related literature

For the absolute stereochemistry of the title compound from NMR and literature data, see: Jefferies & Payne (1967 [triangle]). For background to natural product chemistry, see: Arfan et al. (2010 [triangle]); Khan et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2529-scheme1.jpg

Experimental

Crystal data

  • C20H26O3
  • M r = 314.41
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2529-efi1.jpg
  • a = 9.1343 (8) Å
  • b = 11.8752 (10) Å
  • c = 15.5255 (13) Å
  • V = 1684.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 150 K
  • 0.46 × 0.21 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a [triangle]) T min = 0.963, T max = 0.994
  • 17210 measured reflections
  • 2378 independent reflections
  • 2124 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.094
  • S = 1.05
  • 2378 reflections
  • 210 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b [triangle]) and OLEX2 (Dolomanov et al., 2009 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b [triangle]) and OLEX2; molecular graphics: SHELXTL (Sheldrick, 2008b [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035373/pv2325sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035373/pv2325Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Higher Education Commission of Pakistan for financial support.

supplementary crystallographic information

Comment

In continuation of our work on Natural Product chemistry (Arfan et al., 2010) and in view of the important role played by natural products in medicinal chemistry (Khan et al., 2005), the plant Dodonaea viscosa has been subjected to phytochemical investigation which resulted in the isolation of the title compound.

The title molecule (Fig. 1) is chiral, but its absolute configuration could not be determined from the crystallographic data. However, the absolute stereochemistry of the compound was established from NMR and literature data (Jefferies et al., 1967). The molecule has four chiral centers and the two trans fused cyclohexyl rings of decaline, C7–C14 and C13–C18, adopt chair conformations. The five-membered lactone ring adopts a C13-envelope conformation with C13 0.625 (3) Å out of the plane formed by the rest of the ring atoms. The five-membered furan ring is essentially planar with maximum deviation of any atom from the plane being 0.0052 (12) Å for C2. There are no significant hydrogen bonds or π-π interactions between the molecules although there may be a weak C—H···π interaction linking neighbouring molecules; C2—H2···C1 3.747 (3)Å (under 1/2 + x, 1.5 - y, 1 - z). This leads to zigzag chains running parallel to the a axis (Fig. 2).

Experimental

The whole plant of Dodonaea viscosa (50 kg) was powdered and extracted with methanol (100 L × 3) at room temperature and the residue (1 kg) was separated under vacuum. The residue was suspended in water and extracted with n-hexane, chloroform, ethyl acetate and n-butanol, respectively. The chloroform fraction (500 g) was subjected repeatedly to column chromatography on silica gel using petroleum ether with a gradient of 15% ethyl acetate to yield the title compound (2 g). Colourless crystals suitable for X-ray crystallographic analysis were obtained from an ether–chloroform mixture(1:1) by slow evaporation of the solvent at room temperature.

Refinement

H atoms were placed in geometric positions using a riding model with C—H distances constrained as 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene groups, respectively, and Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all others. Since the compound contains no heavy atoms an absolute configuration could not be determined; the Friedel pairs (1792) were merged.

Figures

Fig. 1.
Molecular structure of the title molecule with atom labels drawn with displacement ellipsoids at 50% probability level.
Fig. 2.
Unit cell packinig of the title compound showing C—H···π interactions as dashed lines.

Crystal data

C20H26O3F(000) = 680
Mr = 314.41Dx = 1.240 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4592 reflections
a = 9.1343 (8) Åθ = 2.6–25.8°
b = 11.8752 (10) ŵ = 0.08 mm1
c = 15.5255 (13) ÅT = 150 K
V = 1684.1 (2) Å3Plate, colourless
Z = 40.46 × 0.21 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer2378 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2σ(I)
graphiteRint = 0.036
ω rotation with narrow frames scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)h = −12→12
Tmin = 0.963, Tmax = 0.994k = −15→15
17210 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0583P)2 + 0.1493P] where P = (Fo2 + 2Fc2)/3
2378 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7909 (2)0.60429 (16)0.47103 (12)0.0302 (4)
H10.73080.54660.49450.036*
O10.90632 (16)0.65328 (12)0.51339 (8)0.0364 (3)
C20.9617 (2)0.73164 (17)0.45834 (13)0.0363 (4)
H21.04220.77950.47100.044*
C30.8874 (2)0.73222 (16)0.38386 (13)0.0313 (4)
H30.90600.77870.33530.038*
C40.77393 (19)0.64889 (14)0.39168 (11)0.0243 (3)
C50.6611 (2)0.61806 (14)0.32528 (11)0.0263 (4)
H5A0.58670.56850.35200.032*
H5B0.70890.57540.27830.032*
C60.58507 (19)0.72228 (13)0.28730 (11)0.0232 (3)
H6A0.66150.77160.26240.028*
H6B0.53910.76420.33530.028*
C70.46681 (18)0.70275 (13)0.21744 (10)0.0205 (3)
C80.4031 (2)0.82001 (13)0.19732 (12)0.0274 (4)
H8A0.33940.84390.24470.041*
H8B0.34610.81650.14390.041*
H8C0.48310.87420.19050.041*
C90.53645 (18)0.64730 (14)0.13577 (10)0.0223 (3)
H90.58890.57810.15570.027*
C100.6498 (2)0.72123 (16)0.09011 (12)0.0310 (4)
H10A0.69540.67840.04320.047*
H10B0.72520.74440.13140.047*
H10C0.60150.78810.06650.047*
C110.42124 (19)0.60881 (15)0.06978 (10)0.0260 (4)
H11A0.37360.67610.04470.031*
H11B0.47130.56830.02250.031*
C120.30336 (19)0.53222 (15)0.10773 (10)0.0256 (4)
H12A0.34820.46060.12680.031*
H12B0.22950.51470.06300.031*
C130.22816 (18)0.59026 (14)0.18497 (10)0.0219 (3)
C140.34897 (18)0.61938 (13)0.25089 (10)0.0194 (3)
H140.40340.54710.25890.023*
C150.2826 (2)0.64366 (14)0.33993 (10)0.0237 (3)
H15A0.36060.66750.38030.028*
H15B0.21010.70530.33550.028*
C160.2082 (2)0.53662 (15)0.37365 (11)0.0280 (4)
H16A0.28320.47840.38530.034*
H16B0.15710.55350.42840.034*
C170.1000 (2)0.49250 (14)0.30904 (12)0.0281 (4)
H170.02180.44590.32790.034*
C180.11187 (19)0.51761 (15)0.22587 (11)0.0257 (4)
C19−0.0169 (2)0.52032 (18)0.16805 (12)0.0330 (4)
O4−0.11876 (15)0.45656 (14)0.15980 (10)0.0450 (4)
O5−0.00711 (14)0.61773 (13)0.12226 (9)0.0390 (3)
C200.12289 (19)0.68107 (16)0.14996 (12)0.0298 (4)
H20A0.09740.73610.19550.036*
H20B0.16740.72180.10090.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0278 (9)0.0339 (9)0.0288 (9)0.0042 (8)−0.0020 (7)−0.0021 (7)
O10.0330 (7)0.0472 (8)0.0288 (6)0.0075 (7)−0.0079 (6)−0.0087 (6)
C20.0273 (9)0.0389 (10)0.0426 (11)0.0006 (8)−0.0051 (8)−0.0131 (9)
C30.0259 (8)0.0338 (9)0.0341 (9)−0.0024 (8)0.0017 (8)−0.0050 (8)
C40.0216 (8)0.0248 (8)0.0265 (8)0.0019 (7)0.0001 (7)−0.0044 (7)
C50.0281 (8)0.0231 (8)0.0277 (8)−0.0004 (7)−0.0053 (7)−0.0019 (7)
C60.0247 (8)0.0202 (7)0.0245 (8)−0.0023 (7)−0.0018 (7)−0.0015 (6)
C70.0235 (7)0.0183 (7)0.0196 (7)0.0008 (6)0.0006 (6)0.0005 (6)
C80.0317 (9)0.0192 (7)0.0313 (9)0.0031 (7)0.0000 (8)0.0022 (7)
C90.0239 (8)0.0222 (7)0.0209 (7)0.0020 (7)0.0008 (6)0.0015 (6)
C100.0299 (9)0.0357 (9)0.0274 (9)−0.0036 (8)0.0068 (7)0.0036 (8)
C110.0263 (8)0.0331 (9)0.0188 (7)0.0008 (8)0.0014 (7)−0.0020 (7)
C120.0259 (8)0.0310 (9)0.0200 (7)−0.0013 (7)−0.0004 (7)−0.0056 (7)
C130.0225 (8)0.0236 (8)0.0195 (7)0.0014 (6)−0.0005 (6)−0.0016 (6)
C140.0208 (7)0.0192 (7)0.0180 (7)0.0013 (6)−0.0001 (6)0.0004 (6)
C150.0278 (8)0.0243 (8)0.0190 (7)−0.0015 (7)0.0001 (7)−0.0021 (6)
C160.0318 (9)0.0304 (9)0.0217 (8)−0.0001 (8)0.0036 (7)0.0027 (7)
C170.0274 (8)0.0258 (8)0.0311 (8)−0.0045 (7)0.0064 (7)−0.0014 (7)
C180.0219 (8)0.0259 (8)0.0293 (8)−0.0015 (7)0.0007 (7)−0.0058 (7)
C190.0222 (8)0.0461 (11)0.0307 (9)0.0012 (8)0.0014 (8)−0.0100 (8)
O40.0257 (7)0.0606 (10)0.0486 (8)−0.0090 (7)−0.0011 (7)−0.0152 (8)
O50.0255 (7)0.0542 (9)0.0372 (7)0.0028 (6)−0.0079 (6)0.0003 (7)
C200.0261 (9)0.0344 (9)0.0289 (9)0.0061 (7)−0.0036 (7)0.0029 (7)

Geometric parameters (Å, °)

C1—C41.350 (3)C10—H10C0.9800
C1—O11.372 (2)C11—C121.528 (2)
C1—H10.9500C11—H11A0.9900
O1—C21.361 (3)C11—H11B0.9900
C2—C31.341 (3)C12—C131.544 (2)
C2—H20.9500C12—H12A0.9900
C3—C41.438 (2)C12—H12B0.9900
C3—H30.9500C13—C181.509 (2)
C4—C51.503 (2)C13—C201.544 (2)
C5—C61.537 (2)C13—C141.544 (2)
C5—H5A0.9900C14—C151.537 (2)
C5—H5B0.9900C14—H141.0000
C6—C71.548 (2)C15—C161.534 (2)
C6—H6A0.9900C15—H15A0.9900
C6—H6B0.9900C15—H15B0.9900
C7—C81.541 (2)C16—C171.502 (3)
C7—C141.552 (2)C16—H16A0.9900
C7—C91.564 (2)C16—H16B0.9900
C8—H8A0.9800C17—C181.330 (3)
C8—H8B0.9800C17—H170.9500
C8—H8C0.9800C18—C191.480 (2)
C9—C101.532 (2)C19—O41.207 (2)
C9—C111.538 (2)C19—O51.361 (3)
C9—H91.0000O5—C201.470 (2)
C10—H10A0.9800C20—H20A0.9900
C10—H10B0.9800C20—H20B0.9900
C4—C1—O1111.05 (17)C9—C11—H11A108.8
C4—C1—H1124.5C12—C11—H11B108.8
O1—C1—H1124.5C9—C11—H11B108.8
C2—O1—C1105.92 (15)H11A—C11—H11B107.7
C3—C2—O1110.93 (18)C11—C12—C13110.32 (14)
C3—C2—H2124.5C11—C12—H12A109.6
O1—C2—H2124.5C13—C12—H12A109.6
C2—C3—C4106.76 (18)C11—C12—H12B109.6
C2—C3—H3126.6C13—C12—H12B109.6
C4—C3—H3126.6H12A—C12—H12B108.1
C1—C4—C3105.33 (16)C18—C13—C2096.26 (13)
C1—C4—C5127.53 (17)C18—C13—C14110.63 (13)
C3—C4—C5127.14 (16)C20—C13—C14121.47 (14)
C4—C5—C6112.14 (14)C18—C13—C12112.63 (14)
C4—C5—H5A109.2C20—C13—C12108.38 (14)
C6—C5—H5A109.2C14—C13—C12107.26 (13)
C4—C5—H5B109.2C15—C14—C13110.88 (13)
C6—C5—H5B109.2C15—C14—C7117.05 (13)
H5A—C5—H5B107.9C13—C14—C7114.63 (13)
C5—C6—C7117.61 (13)C15—C14—H14104.2
C5—C6—H6A107.9C13—C14—H14104.2
C7—C6—H6A107.9C7—C14—H14104.2
C5—C6—H6B107.9C16—C15—C14109.05 (13)
C7—C6—H6B107.9C16—C15—H15A109.9
H6A—C6—H6B107.2C14—C15—H15A109.9
C8—C7—C6105.68 (13)C16—C15—H15B109.9
C8—C7—C14112.47 (13)C14—C15—H15B109.9
C6—C7—C14110.19 (12)H15A—C15—H15B108.3
C8—C7—C9111.70 (13)C17—C16—C15110.66 (14)
C6—C7—C9110.32 (13)C17—C16—H16A109.5
C14—C7—C9106.55 (12)C15—C16—H16A109.5
C7—C8—H8A109.5C17—C16—H16B109.5
C7—C8—H8B109.5C15—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B108.1
C7—C8—H8C109.5C18—C17—C16121.11 (16)
H8A—C8—H8C109.5C18—C17—H17119.4
H8B—C8—H8C109.5C16—C17—H17119.4
C10—C9—C11108.94 (14)C17—C18—C19121.95 (17)
C10—C9—C7114.14 (14)C17—C18—C13126.47 (16)
C11—C9—C7112.76 (13)C19—C18—C13106.96 (15)
C10—C9—H9106.9O4—C19—O5121.90 (18)
C11—C9—H9106.9O4—C19—C18131.6 (2)
C7—C9—H9106.9O5—C19—C18106.47 (15)
C9—C10—H10A109.5C19—O5—C20109.57 (14)
C9—C10—H10B109.5O5—C20—C13104.40 (14)
H10A—C10—H10B109.5O5—C20—H20A110.9
C9—C10—H10C109.5C13—C20—H20A110.9
H10A—C10—H10C109.5O5—C20—H20B110.9
H10B—C10—H10C109.5C13—C20—H20B110.9
C12—C11—C9113.72 (13)H20A—C20—H20B108.9
C12—C11—H11A108.8
C4—C1—O1—C20.5 (2)C12—C13—C14—C762.01 (17)
C1—O1—C2—C3−0.8 (2)C8—C7—C14—C15−67.88 (18)
O1—C2—C3—C40.8 (2)C6—C7—C14—C1549.74 (18)
O1—C1—C4—C3−0.1 (2)C9—C7—C14—C15169.42 (13)
O1—C1—C4—C5179.74 (15)C8—C7—C14—C1364.53 (18)
C2—C3—C4—C1−0.4 (2)C6—C7—C14—C13−177.85 (13)
C2—C3—C4—C5179.75 (17)C9—C7—C14—C13−58.16 (16)
C1—C4—C5—C6131.66 (19)C13—C14—C15—C1663.59 (17)
C3—C4—C5—C6−48.6 (2)C7—C14—C15—C16−162.32 (14)
C4—C5—C6—C7179.56 (14)C14—C15—C16—C17−53.83 (19)
C5—C6—C7—C8175.77 (15)C15—C16—C17—C1823.3 (2)
C5—C6—C7—C1454.02 (18)C16—C17—C18—C19−152.89 (18)
C5—C6—C7—C9−63.35 (18)C16—C17—C18—C13−0.2 (3)
C8—C7—C9—C1053.24 (19)C20—C13—C18—C17−118.6 (2)
C6—C7—C9—C10−63.98 (17)C14—C13—C18—C178.4 (3)
C14—C7—C9—C10176.42 (14)C12—C13—C18—C17128.46 (19)
C8—C7—C9—C11−71.78 (18)C20—C13—C18—C1937.37 (17)
C6—C7—C9—C11171.00 (13)C14—C13—C18—C19164.41 (14)
C14—C7—C9—C1151.41 (16)C12—C13—C18—C19−75.55 (18)
C10—C9—C11—C12178.88 (14)C17—C18—C19—O4−44.6 (3)
C7—C9—C11—C12−53.32 (19)C13—C18—C19—O4158.06 (19)
C9—C11—C12—C1355.58 (19)C17—C18—C19—O5132.85 (18)
C11—C12—C13—C18−179.20 (14)C13—C18—C19—O5−24.47 (19)
C11—C12—C13—C2075.54 (17)O4—C19—O5—C20176.28 (17)
C11—C12—C13—C14−57.24 (17)C18—C19—O5—C20−1.49 (19)
C18—C13—C14—C15−39.51 (18)C19—O5—C20—C1325.98 (18)
C20—C13—C14—C1572.02 (19)C18—C13—C20—O5−37.35 (15)
C12—C13—C14—C15−162.72 (13)C14—C13—C20—O5−156.21 (14)
C18—C13—C14—C7−174.78 (13)C12—C13—C20—O579.04 (16)
C20—C13—C14—C7−63.25 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2325).

References

  • Arfan, M., Ali, M., Anis, I., Ahmad, H., Choudhary, M. I., Khan, A. & Shah, M. R. (2010). J. Enz. Inhib. Med. Chem 25, 296–299. [PubMed]
  • Bruker (1998). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  • Jefferies, P. R. & Payne, T. G. (1967). Tetrahedron Lett.1, 4777–4778.
  • Khan, S. B., Azhar ul, H., Afza, N., Malik, A., Khan, M. T. H., Shah, M. R. & Choudhary, M. I. (2005). Chem. Pharm. Bull. 53, 86–89. [PubMed]
  • Sheldrick, G. M. (2008a). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography