PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2627.
Published online 2010 September 25. doi:  10.1107/S1600536810037578
PMCID: PMC2983347

Dihydro­myricetin hexa­acetate

Abstract

In the title compound, C27H24O14, also known as 2,3-di­acetoxy-5-[(2RS,3RS)-3,5,7-triacetoxy-4-oxochromen-2-yl]phenyl acetate, the heterocyclic ring adopts a distorted half-chair conformation, with two C atoms displaced by 0.1775 (16) and −0.5950 (16) Å from the mean plane of the other four atoms. The dihedral angle between the aromatic rings is 57.81 (8)°. In the crystal, the mol­ecules inter­act by C—H(...)O bonds, aromatic π–π stacking [centroid–centroid separation = 3.6206 (9) Å] and C—H(...)π inter­actions.

Related literature

For the crystal structure of dihydro­myricetin, see: Xu et al. (2007 [triangle]). For the properties of dihydro­myricetin, see: Li et al. (2006 [triangle]); Liu et al. (2009 [triangle]), Gao et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2627-scheme1.jpg

Experimental

Crystal data

  • C27H24O14
  • M r = 572.46
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2627-efi1.jpg
  • a = 7.7979 (2) Å
  • b = 11.6652 (3) Å
  • c = 16.2083 (4) Å
  • α = 96.889 (1)°
  • β = 97.600 (1)°
  • γ = 109.085 (1)°
  • V = 1359.97 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 150 K
  • 0.21 × 0.21 × 0.09 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.976, T max = 0.989
  • 16120 measured reflections
  • 5856 independent reflections
  • 4761 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.110
  • S = 1.03
  • 5856 reflections
  • 377 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL-Plus.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037578/hb5603sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037578/hb5603Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

WL is the recipient of an Endeavour Postdoctoral Fellowship of the Australian Government. This work was partly supported by the Hubei Bureau of Education Key Projects (D20091401), the Hubei Province Natural Science Foundation (2008CDZ001) and the Hubei University of Technology Key Researchers Start-up Fund (BSQD0814).

supplementary crystallographic information

Comment

Dihydromyricetin is the principal flavonoid of Ampelopsis grossedentata, a vine which grows abundantly in southern China. The compound is a strong anti-oxidant with many reported health-promoting properties and, therefore, is emerging as a promising functional ingredient for use in a number of pharmaceutical and food applications (Li et al., 2006). However, the compound is poorly soluble in both water and fat, which limits its applications (Gao et al., 2009). Acetylation could be one way how to improve its lipid solubility. Although the single-crystal structure of dihydromyricetin itself is known (Xu et al., 2007), none of its derivatives have to date been structurally characterized. Herein we report the structure of the hexaacetate of dihydromyricetin (Fig. 1).

Though the title structure is of the biological origin, it crystallizes in a structure where both enantiomers are present. Fig. 1 shows the view of the (R, R) enantiomer. The torsion angle between the benzopyrone and the phenyl ring (O1—C8—C16—C17) is -36.2 (2)°. The crystal packing (Tab. 1, Fig. 2) contains a network of C—H···O interactions. Moreover, there are also present π-electron ring - π-electron ring interactions between the adjacent rings C1//C2//C3//C4//C5//C9 [symmetry code: 1-x,1-y, -z] as indicates the distance between the centroids that equals to 3.6206 (9)Å.

Experimental

The crystals of dihydromyricetin (1 g), prepared as described by Xu et al. (2007), were added by parts to a mixture of acetic anhydride (6 ml) and pyridine (1 ml) maintained at 75°C in the water bath. Each addition was done after the crystals of dihydromyricetin that had been added previously completely dissolved. The mixture was stirred for 30 min and upon addition of chilled water (120 ml), yielded an oily precipitate, which solidified in 15 min. After decanting the supernatant and washing the precipitate with water, the precipitate was collected and dried at 55°C for 24 h to afford a light yellow solid. A portion (50 mg) was dissolved in warm methanol, and yielded, on standing for several days at ambient temperature, colourless plates of (I) (m.p. 436 - 440 K).

Refinement

All the H atoms were located in the difference electron density map. However, the H atoms were placed into the idealized positions with d(C—H) = 0.95 Å for the aryl, 0.980 Å for the methyl and 1.000 Å for the methine hydrogens. The Uiso(H) values were constrained to be 1.2Ueq for the aryl and methine H atoms while 1.5Ueq for the methyl H atoms.

Figures

Fig. 1.
View of the (R,R) enantiomer of (I). The displacement ellipsoids shown at 50% probability level.
Fig. 2.
Packing of the molecules viewed down the a axis showing the C—H···O interactions.

Crystal data

C27H24O14Z = 2
Mr = 572.46F(000) = 596
Triclinic, P1Dx = 1.398 Mg m3
Hall symbol: -P 1Melting point = 436–440 K
a = 7.7979 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6652 (3) ÅCell parameters from 7407 reflections
c = 16.2083 (4) Åθ = 2.5–30.4°
α = 96.889 (1)°µ = 0.12 mm1
β = 97.600 (1)°T = 150 K
γ = 109.085 (1)°Plate, colourless
V = 1359.97 (6) Å30.21 × 0.21 × 0.09 mm

Data collection

Bruker Kappa APEXII CCD diffractometer5856 independent reflections
Radiation source: fine-focus sealed tube4761 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] scans and ω scans with κ offsetsθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→9
Tmin = 0.976, Tmax = 0.989k = −14→14
16120 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.110w = 1/[σ2(Fo2) + (0.0452P)2 + 0.5506P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5856 reflectionsΔρmax = 0.30 e Å3
377 parametersΔρmin = −0.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
90 constraintsExtinction coefficient: 0.0070 (16)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ (F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.72782 (15)0.50439 (9)0.17597 (6)0.0248 (2)
O20.82930 (16)0.23522 (10)0.02789 (7)0.0285 (3)
O30.69164 (15)0.73102 (9)−0.04552 (6)0.0249 (2)
O40.88884 (16)0.87775 (10)0.06016 (7)0.0332 (3)
O50.81318 (15)0.36393 (9)−0.10513 (6)0.0243 (2)
O60.53693 (17)0.21507 (11)−0.11517 (8)0.0395 (3)
O70.77402 (16)0.20741 (10)0.18599 (7)0.0276 (3)
O81.0734 (2)0.22913 (14)0.20952 (9)0.0503 (4)
O90.86595 (16)0.57686 (10)0.49672 (6)0.0275 (3)
O100.84901 (17)0.73527 (11)0.43165 (7)0.0320 (3)
O110.57423 (16)0.40577 (11)0.53218 (6)0.0275 (3)
O120.7581 (2)0.30683 (15)0.57861 (8)0.0540 (4)
O130.36896 (15)0.19986 (10)0.41469 (7)0.0294 (3)
O140.50639 (19)0.06354 (12)0.37879 (10)0.0475 (4)
C10.7183 (2)0.61969 (13)0.06911 (9)0.0220 (3)
H10.69960.67990.10830.026*
C20.7256 (2)0.63424 (13)−0.01355 (9)0.0206 (3)
C30.7503 (2)0.54634 (13)−0.07242 (9)0.0213 (3)
H30.75230.5575−0.12940.026*
C40.77163 (19)0.44346 (13)−0.04645 (9)0.0200 (3)
C50.76921 (19)0.42384 (13)0.03763 (9)0.0193 (3)
C60.8072 (2)0.32072 (13)0.07019 (9)0.0210 (3)
C70.8197 (2)0.32839 (14)0.16601 (9)0.0240 (3)
H70.94690.38110.19610.029*
C80.6793 (2)0.38156 (13)0.19367 (9)0.0226 (3)
H80.55550.33130.15890.027*
C90.7390 (2)0.51454 (13)0.09333 (9)0.0203 (3)
C100.7732 (2)0.84986 (14)−0.00181 (10)0.0256 (3)
C110.6960 (3)0.93267 (16)−0.04461 (13)0.0430 (5)
H11A0.75551.0174−0.01390.064*
H11B0.56280.9064−0.04540.064*
H11C0.71870.9288−0.10270.064*
C120.6877 (2)0.24719 (15)−0.13283 (10)0.0281 (3)
C130.7670 (3)0.17287 (17)−0.18755 (11)0.0388 (4)
H13A0.86350.1541−0.15260.058*
H13B0.82010.2199−0.22990.058*
H13C0.66930.0959−0.21610.058*
C140.9157 (3)0.16750 (17)0.20681 (10)0.0327 (4)
C150.8447 (3)0.04084 (18)0.22644 (12)0.0477 (5)
H15A0.94880.01440.24440.072*
H15B0.7653−0.01580.17590.072*
H15C0.77350.04050.27190.072*
C160.6647 (2)0.38600 (14)0.28534 (9)0.0216 (3)
C170.7826 (2)0.48387 (14)0.34725 (9)0.0227 (3)
H170.88030.54740.33290.027*
C180.7543 (2)0.48648 (14)0.42975 (9)0.0226 (3)
C190.6149 (2)0.39279 (14)0.45148 (9)0.0221 (3)
C200.5068 (2)0.29293 (14)0.39022 (10)0.0231 (3)
C210.5276 (2)0.29052 (14)0.30684 (9)0.0235 (3)
H210.44840.22390.26450.028*
C220.9069 (2)0.69928 (14)0.49122 (10)0.0253 (3)
C231.0292 (2)0.77456 (15)0.57159 (10)0.0307 (4)
H23A1.05860.86230.56900.046*
H23B1.14360.75600.57940.046*
H23C0.96590.75490.61920.046*
C240.6593 (2)0.36239 (15)0.59285 (10)0.0282 (3)
C250.6109 (3)0.3970 (2)0.67600 (11)0.0462 (5)
H25A0.48020.35160.67510.069*
H25B0.63370.48570.68660.069*
H25C0.68700.37650.72090.069*
C260.3857 (2)0.08583 (15)0.40763 (11)0.0316 (4)
C270.2336 (3)−0.00180 (19)0.43981 (16)0.0515 (5)
H27A0.1167−0.02050.40090.077*
H27B0.22490.03550.49590.077*
H27C0.2592−0.07800.44380.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0379 (6)0.0226 (5)0.0161 (5)0.0125 (5)0.0074 (4)0.0032 (4)
O20.0397 (7)0.0246 (6)0.0242 (6)0.0152 (5)0.0085 (5)0.0015 (4)
O30.0302 (6)0.0191 (5)0.0229 (5)0.0072 (5)−0.0005 (4)0.0036 (4)
O40.0340 (7)0.0263 (6)0.0326 (7)0.0069 (5)−0.0023 (5)−0.0008 (5)
O50.0308 (6)0.0244 (5)0.0187 (5)0.0108 (5)0.0084 (4)0.0007 (4)
O60.0308 (7)0.0324 (7)0.0467 (8)0.0069 (5)0.0025 (6)−0.0089 (5)
O70.0357 (6)0.0257 (6)0.0263 (6)0.0140 (5)0.0094 (5)0.0092 (4)
O80.0437 (9)0.0627 (9)0.0511 (9)0.0285 (8)0.0027 (7)0.0131 (7)
O90.0353 (6)0.0261 (6)0.0176 (5)0.0098 (5)−0.0010 (4)−0.0006 (4)
O100.0376 (7)0.0310 (6)0.0267 (6)0.0121 (5)0.0029 (5)0.0047 (5)
O110.0372 (6)0.0392 (6)0.0167 (5)0.0239 (5)0.0100 (5)0.0093 (4)
O120.0768 (11)0.0851 (11)0.0371 (7)0.0652 (9)0.0248 (7)0.0286 (7)
O130.0290 (6)0.0289 (6)0.0343 (6)0.0101 (5)0.0145 (5)0.0107 (5)
O140.0421 (8)0.0320 (7)0.0747 (10)0.0152 (6)0.0248 (7)0.0116 (6)
C10.0232 (8)0.0208 (7)0.0206 (7)0.0068 (6)0.0041 (6)0.0002 (6)
C20.0179 (7)0.0176 (7)0.0237 (7)0.0033 (6)0.0021 (6)0.0041 (6)
C30.0203 (7)0.0243 (7)0.0167 (7)0.0041 (6)0.0035 (6)0.0036 (6)
C40.0181 (7)0.0198 (7)0.0192 (7)0.0038 (6)0.0043 (5)−0.0008 (5)
C50.0177 (7)0.0198 (7)0.0187 (7)0.0044 (6)0.0041 (5)0.0021 (5)
C60.0191 (7)0.0216 (7)0.0212 (7)0.0053 (6)0.0049 (6)0.0025 (6)
C70.0274 (8)0.0230 (7)0.0227 (8)0.0096 (6)0.0056 (6)0.0049 (6)
C80.0266 (8)0.0217 (7)0.0180 (7)0.0070 (6)0.0042 (6)0.0021 (6)
C90.0199 (7)0.0215 (7)0.0171 (7)0.0049 (6)0.0028 (5)0.0015 (5)
C100.0258 (8)0.0209 (7)0.0280 (8)0.0051 (6)0.0059 (7)0.0036 (6)
C110.0446 (11)0.0235 (9)0.0547 (12)0.0092 (8)−0.0057 (9)0.0075 (8)
C120.0339 (9)0.0277 (8)0.0218 (8)0.0137 (7)−0.0016 (7)0.0001 (6)
C130.0530 (12)0.0361 (10)0.0305 (9)0.0241 (9)0.0042 (8)−0.0031 (7)
C140.0432 (11)0.0413 (10)0.0187 (8)0.0229 (9)0.0040 (7)0.0033 (7)
C150.0823 (16)0.0368 (10)0.0304 (10)0.0338 (11)0.0007 (10)0.0037 (8)
C160.0247 (8)0.0247 (7)0.0170 (7)0.0109 (6)0.0039 (6)0.0032 (6)
C170.0236 (8)0.0238 (7)0.0210 (7)0.0083 (6)0.0044 (6)0.0039 (6)
C180.0253 (8)0.0247 (7)0.0179 (7)0.0113 (6)0.0007 (6)0.0006 (6)
C190.0284 (8)0.0284 (8)0.0166 (7)0.0172 (7)0.0068 (6)0.0060 (6)
C200.0216 (7)0.0255 (8)0.0261 (8)0.0110 (6)0.0078 (6)0.0075 (6)
C210.0245 (8)0.0243 (7)0.0204 (7)0.0083 (6)0.0025 (6)0.0013 (6)
C220.0247 (8)0.0284 (8)0.0228 (8)0.0089 (7)0.0083 (6)0.0015 (6)
C230.0298 (9)0.0314 (9)0.0264 (8)0.0081 (7)0.0035 (7)−0.0023 (7)
C240.0311 (9)0.0351 (9)0.0240 (8)0.0166 (7)0.0064 (7)0.0106 (7)
C250.0596 (13)0.0746 (14)0.0213 (9)0.0421 (12)0.0116 (8)0.0148 (9)
C260.0300 (9)0.0291 (9)0.0346 (9)0.0084 (7)0.0059 (7)0.0073 (7)
C270.0491 (12)0.0397 (11)0.0755 (15)0.0144 (10)0.0306 (11)0.0288 (10)

Geometric parameters (Å, °)

O1—C91.3704 (17)C8—H81.0000
O1—C81.4322 (18)C10—C111.486 (2)
O2—C61.2143 (17)C11—H11A0.9800
O3—C101.3773 (18)C11—H11B0.9800
O3—C21.3830 (17)C11—H11C0.9800
O4—C101.1911 (19)C12—C131.494 (2)
O5—C121.3709 (19)C13—H13A0.9800
O5—C41.3916 (16)C13—H13B0.9800
O6—C121.196 (2)C13—H13C0.9800
O7—C141.351 (2)C14—C151.488 (3)
O7—C71.4265 (18)C15—H15A0.9800
O8—C141.197 (2)C15—H15B0.9800
O9—C221.3743 (19)C15—H15C0.9800
O9—C181.3867 (18)C16—C211.385 (2)
O10—C221.1910 (19)C16—C171.397 (2)
O11—C241.3525 (19)C17—C181.382 (2)
O11—C191.3886 (17)C17—H170.9500
O12—C241.185 (2)C18—C191.385 (2)
O13—C261.371 (2)C19—C201.383 (2)
O13—C201.3941 (18)C20—C211.380 (2)
O14—C261.191 (2)C21—H210.9500
C1—C21.377 (2)C22—C231.492 (2)
C1—C91.383 (2)C23—H23A0.9800
C1—H10.9500C23—H23B0.9800
C2—C31.394 (2)C23—H23C0.9800
C3—C41.370 (2)C24—C251.492 (2)
C3—H30.9500C25—H25A0.9800
C4—C51.410 (2)C25—H25B0.9800
C5—C91.4072 (19)C25—H25C0.9800
C5—C61.469 (2)C26—C271.491 (2)
C6—C71.533 (2)C27—H27A0.9800
C7—C81.514 (2)C27—H27B0.9800
C7—H71.0000C27—H27C0.9800
C8—C161.5013 (19)
C9—O1—C8115.21 (11)H13A—C13—H13C109.5
C10—O3—C2120.74 (12)H13B—C13—H13C109.5
C12—O5—C4118.54 (12)O8—C14—O7122.91 (17)
C14—O7—C7116.89 (13)O8—C14—C15127.04 (17)
C22—O9—C18120.25 (12)O7—C14—C15110.04 (17)
C24—O11—C19118.70 (12)C14—C15—H15A109.5
C26—O13—C20116.82 (12)C14—C15—H15B109.5
C2—C1—C9117.87 (13)H15A—C15—H15B109.5
C2—C1—H1121.1C14—C15—H15C109.5
C9—C1—H1121.1H15A—C15—H15C109.5
C1—C2—O3122.15 (13)H15B—C15—H15C109.5
C1—C2—C3122.11 (13)C21—C16—C17120.62 (13)
O3—C2—C3115.47 (13)C21—C16—C8117.82 (13)
C4—C3—C2118.70 (13)C17—C16—C8121.54 (14)
C4—C3—H3120.6C18—C17—C16118.70 (14)
C2—C3—H3120.6C18—C17—H17120.7
C3—C4—O5116.72 (13)C16—C17—H17120.7
C3—C4—C5122.16 (13)C17—C18—C19121.01 (14)
O5—C4—C5120.86 (13)C17—C18—O9123.72 (14)
C9—C5—C4116.26 (13)C19—C18—O9115.19 (13)
C9—C5—C6119.47 (13)C20—C19—C18119.42 (13)
C4—C5—C6124.15 (12)C20—C19—O11120.74 (14)
O2—C6—C5125.38 (13)C18—C19—O11119.56 (13)
O2—C6—C7120.45 (13)C21—C20—C19120.55 (14)
C5—C6—C7114.16 (12)C21—C20—O13121.56 (14)
O7—C7—C8107.60 (12)C19—C20—O13117.75 (13)
O7—C7—C6109.39 (12)C20—C21—C16119.51 (14)
C8—C7—C6108.99 (12)C20—C21—H21120.2
O7—C7—H7110.3C16—C21—H21120.2
C8—C7—H7110.3O10—C22—O9123.93 (14)
C6—C7—H7110.3O10—C22—C23127.63 (15)
O1—C8—C16108.45 (11)O9—C22—C23108.43 (13)
O1—C8—C7107.80 (12)C22—C23—H23A109.5
C16—C8—C7115.37 (12)C22—C23—H23B109.5
O1—C8—H8108.3H23A—C23—H23B109.5
C16—C8—H8108.3C22—C23—H23C109.5
C7—C8—H8108.3H23A—C23—H23C109.5
O1—C9—C1115.19 (12)H23B—C23—H23C109.5
O1—C9—C5121.95 (13)O12—C24—O11122.55 (15)
C1—C9—C5122.86 (13)O12—C24—C25127.56 (16)
O4—C10—O3123.10 (14)O11—C24—C25109.88 (14)
O4—C10—C11127.33 (15)C24—C25—H25A109.5
O3—C10—C11109.57 (13)C24—C25—H25B109.5
C10—C11—H11A109.5H25A—C25—H25B109.5
C10—C11—H11B109.5C24—C25—H25C109.5
H11A—C11—H11B109.5H25A—C25—H25C109.5
C10—C11—H11C109.5H25B—C25—H25C109.5
H11A—C11—H11C109.5O14—C26—O13122.89 (16)
H11B—C11—H11C109.5O14—C26—C27126.64 (17)
O6—C12—O5122.57 (14)O13—C26—C27110.47 (15)
O6—C12—C13127.38 (16)C26—C27—H27A109.5
O5—C12—C13110.04 (15)C26—C27—H27B109.5
C12—C13—H13A109.5H27A—C27—H27B109.5
C12—C13—H13B109.5C26—C27—H27C109.5
H13A—C13—H13B109.5H27A—C27—H27C109.5
C12—C13—H13C109.5H27B—C27—H27C109.5

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O6i0.952.533.2847 (19)136
C8—H8···O3i1.002.333.2833 (18)158
C11—H11A···O2ii0.982.403.347 (2)161
C13—H13A···O4iii0.982.443.417 (2)176
C15—H15B···O4iv0.982.593.232 (2)124
C23—H23B···Cg3v0.982.863.7598 (18)153

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y+1, z; (iii) −x+2, −y+1, −z; (iv) x, y−1, z; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5603).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  • Gao, J., Liu, B., Ning, Z., Zhao, R., Zhang, A. & Wu, Q. (2009). J. Food Biochem.33, 808–820.
  • Li, Y., Tan, Z., Li, T., Xiao, B. & Dai, Q. (2006). Acta Nutr. Sin.28, 506–509.
  • Liu, B., Du, J., Zeng, J., Chen, C. & Niu, S. (2009). Eur. Food Res. Technol.230, 325–331.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, Z., Liu, B., Ning, Z. & Zhang, Y. (2007). Acta Cryst. E63, o4384.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography