PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2493.
Published online 2010 September 4. doi:  10.1107/S1600536810034756
PMCID: PMC2983344

3-Chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine

Abstract

In the title compound, C9H9ClN4, the dihedral angle between the aromatic rings is 6.25 (9)°. The whole mol­ecule is approximately planar (r.m.s. deviation = 0.070 Å). In the crystal, π–π inter­actions between the centroids of the pyridazine rings [separation = 3.5904 (10) Å] occur.

Related literature

For background to pyrazolylpyridazine derivatives and for related crystal structures, see: Ather et al. (2010a [triangle],b [triangle],c [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2493-scheme1.jpg

Experimental

Crystal data

  • C9H9ClN4
  • M r = 208.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2493-efi1.jpg
  • a = 11.2773 (3) Å
  • b = 8.4181 (2) Å
  • c = 11.3501 (3) Å
  • β = 116.529 (1)°
  • V = 964.05 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 296 K
  • 0.32 × 0.24 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.903, T max = 0.932
  • 6922 measured reflections
  • 1727 independent reflections
  • 1514 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.090
  • S = 1.04
  • 1727 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034756/hb5625sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034756/hb5625Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

In continuation of our studies of pyrazolylpyridazine derivatives (Ather et al., 2010a,b,c), the title compound (I, Fig. 1) is being reported here.

In the title compound, the 3-chloro-pyridazine group A (C1—C4/N1/N2/CL1) and 3,5-dimethyl-pyrazol moiety B (N3/N4/C5—C9) are planar with r. m. s. deviation of 0.0057 and 0.0121 Å, respectively. The dihedral angle between A/B is 6.40 (9)°. The title compound essentially consists of monomers. The molecules are stabilized due to π–π interactions. There exist π–π interactions between the centroids of pyridazine rings at a distance of 3.5904 (10) Å [symmetry code: 1 - x, 1 - y, 1 - z]. The centroids of pyridazine and pyrazol rings are separated at 4.1319 (9) Å [symmetry code: 1 - x, 1 - y, 1 - z] and 4.4233 (9)Å [symmetry code: 1 - x, 2 - y, 1 - z].

Experimental

3-Chloro-6-hydrazinylpyridazine (1 g, 6.92 mmol) was dissolved in 5 ml of ethanol. To this solution acetylacetone (8 mmol) and acetic acid (0.7 ml) were added and heated for 30 min. The unreacted acetic acid was removed under vacuum and charged to 25 ml of distilled water and filtered. The final product was re-crystallized in ethanol to obtain colourless prisms of (I).

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Figures

Fig. 1.
View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radius.

Crystal data

C9H9ClN4F(000) = 432
Mr = 208.65Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1514 reflections
a = 11.2773 (3) Åθ = 3.1–25.3°
b = 8.4181 (2) ŵ = 0.36 mm1
c = 11.3501 (3) ÅT = 296 K
β = 116.529 (1)°Prism, colourless
V = 964.05 (4) Å30.32 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer1727 independent reflections
Radiation source: fine-focus sealed tube1514 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −10→10
Tmin = 0.903, Tmax = 0.932l = −13→13
6922 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3389P] where P = (Fo2 + 2Fc2)/3
1727 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.76089 (4)0.97122 (6)0.60328 (4)0.0581 (2)
N10.56592 (14)0.81330 (18)0.60486 (13)0.0495 (5)
N20.45739 (14)0.71964 (18)0.55421 (13)0.0487 (5)
N30.29683 (12)0.57550 (16)0.38434 (12)0.0419 (4)
N40.25369 (14)0.50746 (16)0.26163 (13)0.0465 (4)
C10.62272 (15)0.84978 (19)0.53015 (15)0.0427 (5)
C20.58063 (16)0.7982 (2)0.40156 (16)0.0480 (5)
C30.47217 (16)0.7034 (2)0.35066 (15)0.0460 (5)
C40.41180 (14)0.66847 (18)0.43182 (14)0.0389 (5)
C50.21463 (16)0.5362 (2)0.44074 (16)0.0449 (5)
C60.11915 (17)0.4428 (2)0.35130 (17)0.0510 (6)
C70.14674 (16)0.4269 (2)0.24272 (16)0.0464 (5)
C80.07365 (19)0.3310 (3)0.12074 (19)0.0620 (7)
C90.23144 (19)0.5897 (3)0.57258 (17)0.0589 (6)
H20.624800.827380.352580.0576*
H30.439290.663220.265550.0551*
H60.048310.397410.360070.0612*
H8A0.116720.340890.064800.0930*
H8B−0.015820.368890.074980.0930*
H8C0.073040.221430.144000.0930*
H9A0.157890.553080.586220.0883*
H9B0.235010.703580.576650.0883*
H9C0.312250.546730.639740.0883*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0593 (3)0.0588 (3)0.0592 (3)−0.0085 (2)0.0291 (2)−0.0040 (2)
N10.0543 (8)0.0585 (9)0.0412 (7)−0.0008 (7)0.0264 (6)−0.0005 (6)
N20.0513 (8)0.0624 (9)0.0396 (7)−0.0016 (7)0.0268 (6)0.0009 (6)
N30.0427 (7)0.0509 (8)0.0372 (7)0.0059 (6)0.0223 (6)0.0047 (6)
N40.0480 (8)0.0545 (8)0.0410 (7)0.0031 (6)0.0234 (6)−0.0009 (6)
C10.0446 (8)0.0435 (8)0.0429 (9)0.0066 (7)0.0222 (7)0.0050 (7)
C20.0487 (9)0.0617 (10)0.0422 (9)0.0029 (8)0.0280 (7)0.0064 (7)
C30.0471 (9)0.0607 (10)0.0356 (8)0.0041 (7)0.0234 (7)0.0025 (7)
C40.0408 (8)0.0433 (8)0.0369 (8)0.0105 (6)0.0213 (6)0.0084 (6)
C50.0443 (9)0.0525 (9)0.0456 (9)0.0093 (7)0.0269 (7)0.0098 (7)
C60.0443 (9)0.0581 (10)0.0564 (10)0.0033 (8)0.0277 (8)0.0084 (8)
C70.0438 (9)0.0474 (9)0.0484 (9)0.0069 (7)0.0209 (7)0.0053 (7)
C80.0608 (11)0.0638 (12)0.0592 (11)−0.0047 (9)0.0249 (9)−0.0061 (9)
C90.0569 (10)0.0818 (13)0.0511 (10)−0.0020 (10)0.0360 (9)0.0010 (9)

Geometric parameters (Å, °)

Cl1—C11.7340 (18)C5—C91.492 (3)
N1—N21.350 (2)C6—C71.406 (3)
N1—C11.307 (2)C7—C81.493 (3)
N2—C41.320 (2)C2—H20.9300
N3—N41.3781 (18)C3—H30.9300
N3—C41.400 (2)C6—H60.9300
N3—C51.382 (2)C8—H8A0.9600
N4—C71.315 (2)C8—H8B0.9600
C1—C21.388 (2)C8—H8C0.9600
C2—C31.355 (3)C9—H9A0.9600
C3—C41.400 (2)C9—H9B0.9600
C5—C61.353 (2)C9—H9C0.9600
N2—N1—C1118.35 (14)C6—C7—C8128.16 (18)
N1—N2—C4119.46 (15)C1—C2—H2122.00
N4—N3—C4118.01 (14)C3—C2—H2122.00
N4—N3—C5111.21 (14)C2—C3—H3121.00
C4—N3—C5130.79 (13)C4—C3—H3121.00
N3—N4—C7105.27 (14)C5—C6—H6126.00
Cl1—C1—N1115.08 (12)C7—C6—H6126.00
Cl1—C1—C2120.01 (14)C7—C8—H8A109.00
N1—C1—C2124.91 (16)C7—C8—H8B109.00
C1—C2—C3116.90 (17)C7—C8—H8C109.00
C2—C3—C4117.07 (15)H8A—C8—H8B109.00
N2—C4—N3116.49 (15)H8A—C8—H8C109.00
N2—C4—C3123.29 (16)H8B—C8—H8C109.00
N3—C4—C3120.22 (13)C5—C9—H9A109.00
N3—C5—C6105.38 (15)C5—C9—H9B109.00
N3—C5—C9125.57 (16)C5—C9—H9C109.00
C6—C5—C9129.05 (19)H9A—C9—H9B109.00
C5—C6—C7107.42 (17)H9A—C9—H9C109.00
N4—C7—C6110.72 (15)H9B—C9—H9C109.00
N4—C7—C8121.10 (17)
C1—N1—N2—C4−0.2 (2)C4—N3—C5—C6−179.65 (16)
N2—N1—C1—Cl1179.72 (12)C4—N3—C5—C90.8 (3)
N2—N1—C1—C2−0.6 (3)N3—N4—C7—C60.49 (19)
N1—N2—C4—N3−178.28 (14)N3—N4—C7—C8−177.82 (16)
N1—N2—C4—C31.5 (3)Cl1—C1—C2—C3179.88 (13)
C4—N3—N4—C7179.37 (14)N1—C1—C2—C30.2 (3)
C5—N3—N4—C7−0.21 (18)C1—C2—C3—C40.9 (2)
N4—N3—C4—N2−173.89 (14)C2—C3—C4—N2−1.8 (3)
N4—N3—C4—C36.4 (2)C2—C3—C4—N3177.92 (15)
C5—N3—C4—N25.6 (3)N3—C5—C6—C70.43 (19)
C5—N3—C4—C3−174.15 (16)C9—C5—C6—C7179.98 (19)
N4—N3—C5—C6−0.15 (19)C5—C6—C7—N4−0.6 (2)
N4—N3—C5—C9−179.73 (17)C5—C6—C7—C8177.56 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5625).

References

  • Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o1327. [PMC free article] [PubMed]
  • Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010b). Acta Cryst. E66, o1900. [PMC free article] [PubMed]
  • Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2016. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography